Advance Search
MU Jin-Hu, CHEN Yu-Ze, FENG Hui, LI Wen-Jian, ZHOU Li-Bin. A New Revolution in Crop Breeding: The Era of High-Throughput Phenomics[J]. Plant Science Journal, 2016, 34(6): 962-971. DOI: 10.11913/PSJ.2095-0837.2016.60962
Citation: MU Jin-Hu, CHEN Yu-Ze, FENG Hui, LI Wen-Jian, ZHOU Li-Bin. A New Revolution in Crop Breeding: The Era of High-Throughput Phenomics[J]. Plant Science Journal, 2016, 34(6): 962-971. DOI: 10.11913/PSJ.2095-0837.2016.60962

A New Revolution in Crop Breeding: The Era of High-Throughput Phenomics

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (11275171, 11205218), Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDA08040111), CAS ‘Light of West China’ Program (29Y506020) and Youth Innovation Promotion Association of CAS (2015337).

More Information
  • Received Date: May 09, 2016
  • Revised Date: May 29, 2016
  • Available Online: October 31, 2022
  • Published Date: December 27, 2016
  • Traditional phenomics research has trailed the high-speed development of genomics, transcriptomics, and transcriptomics, thereby restricting crop breeding and functional genomics study. To break this bottleneck, international and domestic researchers have developed various platforms for phenomics analysis with the characteristics of automation, high-precision, and high-throughput, and combined these platforms with numerous ‘omics’ research. These developments will advance a new technology revolution in the research field of crop breeding. In this review, the concepts and significance of plant phenomics are introduced briefly. Analysis on the high-throughput phenomics platform is illustrated in detail. In addition, future development in phenomics and the comprehensive utilization of large biological data are reviewed.
  • [1]
    Puma MJ, Bose S, Chon SY, Cook BI. Assessing the evolving fragility of the global food system[J]. Plos Genet, 2015, 10(2):e1002963.
    [2]
    Bruford MW, Catarina G, Irene H, Stéphane J, Pablo OT, Alberto FJ, Amaral AJ, Mario B, Filippo B, Licia C. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025[J]. Front Genet, 2015, 6(314).
    [3]
    袁阳阳, 王青锋, 陈进明. 基于转录组测序信息的水生植物莕菜SSR标记开发[J]. 植物学学报, 2013, 31(5):485-492.

    Yuan YY, Wang QF, Chen JM. Development of SSR mar-kers in aquatic plant Nymphoides peltata(Menyanthaceae) based on information from transcriptome sequencing[J]. Plant Science Journal, 2013, 31(5):485-492.
    [4]
    Yang W, Guo Z, Huang C, Ke W, Ni J, Hui F, Chen G, Qian L, Xiong L. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer[J]. J Exp Bot, 2015, 66(18):5605-5615.
    [5]
    Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT. High-throughput phenotyping of seminal root traits in wheat[J]. Plant Meth, 2015, 11(1):1-11.
    [6]
    Tackenberg O. A new method for non-destructive mea-surement of biomass, growth rates, vertical biomass distribution and dry matter content based on digital image analysis[J]. Ann Bot, 2007, 99(4):777-783.
    [7]
    Araus JL, Cairns JE. Field high-throughput phenotyping:the new crop breeding frontier[J]. Trends Plant Sci, 2014, 19(1):52-61.
    [8]
    Neilson EH, Edwards AM, Blomstedt CK, Berger B, Møller BL, Gleadow RM. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time[J]. J Exp Bot,2015, 66(7):1817-1832.
    [9]
    Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C. Dissecting the phenotypic components of crop clant growth and drought responses based on high-throughput image analysis[J]. Plant Cell, 2014, 26(12):46-55.
    [10]
    Johannsen W. The genotype conception of heredity[J]. Int J Epidem, 2014, 43(4):129-159.
    [11]
    Davis BD. The isolation of biochemically deficient mutants of bacteria by means of penicillin[J]. Proc Natl Acad Sci USA, 1949, 35(1):1-10.
    [12]
    Mahner M, Kary M. What exactly are genomes, genotypes and phenotypes? And what about phenomes?[J]. J Theoret Biol, 1997, 186(186):55-63.
    [13]
    Nelson F, Chiara S. The human phenome project[J]. Nat Genetics, 2003, 34(1):15-21.
    [14]
    Schork NJ. Genetics of complex disease:approaches, problems, and solutions[J]. Am J Res Cri Car Medicin, 1997, 156(4):S103-S109.
    [15]
    Gowen CM, Fong SS. Phenome Analysis of Microorganisms[M]. New York:Springer, 2009.
    [16]
    Scharr H, Minervini M, French AP, Klukas C, Kramer DM, Liu X, Luengo I, Pape JM, Polder G, Vukadinovic D. Leaf segmentation in plant phenotyping:a collation study[J]. Machi Vision, 2015:1-22.
    [17]
    Hancock J T, Whiteman M. Hydrogen sulfide and cell signaling:team player or referee?[J]. Plant Physiol, 2014, 78(3):37-42.
    [18]
    潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报, 2015,41(2):175-186.

    Pan YH. Analysis of concepts and categories of plant phenome and phenomics[J]. Acta Agronomica Sinica, 2015, 41(2):175-186.
    [19]
    Furbank RT. Plant phenomics:from gene to form and function[J]. Funct Plant Biol, 2009, 36(10-11):Ⅴ-Ⅵ.[STXFZ]
    [20]
    Singh A, Ganapathysubramanian B, Singh AK, Sarkar S. Machine learning for high-throughput stress phenotyping in plants[J]. Trends Plant Sci, 2015, 21(2):110-124.
    [21]
    Goggin FL, Lorence A, Topp CN. Applying high-throughput phenotyping to plant-insect interactions:picturing more resistant crops[J]. Curr Opin Insect Sci, 2015, 9:69-76.
    [22]
    Barker J, Zhang N, Sharon J, Steeves R, Wang X, Wei Y, Poland J. Development of a field-based high-throughput mobile phenotyping platform[J]. Comput Elect Agr, 2016, 122:74-85.
    [23]
    Batz J, Méndez-Dorado M, Thomasson J. Imaging for high-throughput phenotyping in energy sorghum[J]. J Imaging, 2016, 2(1):2-12.
    [24]
    Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M. Phenome analysis in plant species using loss-of-function and gain-of-function mutants[J]. Plant Cell Physiol, 2009, 50(7):1215-1231.
    [25]
    Bart R, Fabio F, Fatma K, Klaas V, Dirk I, Beemster GTS. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes[J]. Plant Physiol, 2007, 143(3):1429-1438.
    [26]
    Sadok W, Naudin PB, Muller B, Welcker C, Tardieu F. Leaf growth rate per unit thermal time follows QTL-depen-dent daily patterns in hundreds of maize lines under naturally fluctuating conditions[J]. Plant Cell Environ, 2007, 30(2):135-146.
    [27]
    Mastrangelo M. Novel genes of early-onset epileptic encephalopathies:from genotype to phenotypes[J]. Pediat Neurol, 2015, 46(1):24-31..
    [28]
    Fahlgren N, Gehan MA, Baxter I. Lights, camera, action:high-throughput plant phenotyping is ready for a close-up[J]. Curr Opin Plant Biol, 2015, 24:93-99.
    [29]
    Furbank RT, Mark T. Phenomics-technologies to relieve the phenotyping bottleneck[J]. Trends Plant Sci, 2011, 16(12):635-644.
    [30]
    Anna K, Katja H, Michael P, Markus W, Philipp R, Steffen K, Heiner K, Reinhard TP. An automated field phenotyping pipeline for application in grapevine research[J]. Sensors, 2015, 15(3):4823-4836.
    [31]
    Dhondt S, Wuyts N, Inze D. Cell to whole-plant phenotyping:the best is yet to come[J]. Trends Plant Sci, 2013, 18(8):428-439.
    [32]
    Sharma B, Ritchie GL. High-throughput phenotyping of cotton in multiple irrigation environments[J]. Crop Scien-ce, 2015, 55(2):958-969.
    [33]
    Humplík JF, Lazár D, Fürst T, Husič ková A, Hy bl M, Spíchal L. Automated integrative high-throughput phenotyping of plant shoots:a case study of the cold-tolerance of pea (Pisum sativum L.)[J]. Plant Meth, 2015, 11(20):1-11.
    [34]
    Kloth KJ, Broeke CJT, Thoen MP, Brink HVD, Wiegers GL, Krips OE, Noldus LP, Dicke M, Jongsma MA. High-throughput phenotyping of plant resistance to aphids by automated video tracking[J]. Plant Meth, 2015, 11(1):1-14.
    [35]
    Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice[J]. Nat Commun 2014, 5(6):92-96.
    [36]
    Pereyra-Irujo GA, Gasco ED, Peirone LS, Aguirrezábal LAN. GlyPh:a low-cost platform for phenotyping plant growth and water use[J]. Funct Plant Biol, 2012, 39(11):905-913.
    [37]
    Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana[J]. Front in Plant Sci, 2015, 6:167.
    [38]
    Doroshkov AV, Afonnikov DA, Dobrovolskaya OB, Pshe-nichnikova TA. Interactions between leaf pubescence genes in bread wheat as assessed by high throughput phenotyping[J]. Euphytica, 2015, 207(3):1-10.
    [39]
    Aksoy EE, Abramov A, Wörgötter F, Scharr H, Fischbach A, Dellen B. Modeling leaf growth of rosette plants using infrared stereo image sequences[J]. Comput Elect Agri, 2015, 110:78-90.
    [40]
    Golbach F, Kootstra G, Damjanovic S, Otten G, Zedde RVD. Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping[J]. Machine Vis Applicat, 2015:1-18.
    [41]
    王瑞. 数码影像之前世今生[J]. 中国摄影, 2015, 1:106-112.

    Wang R. The karma of digital images[J]. Chinese Photography, 2015, 1:106-112.
    [42]
    Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS. Accurate inference of shoot biomass from high-throughput images of cereal plants[J]. Plant Meth, 2011, 7(1):1-11.
    [43]
    Duan L, Yang W, Huang C, Qian L. Novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice[J]. Plant Meth, 2011, 7(18):1-13.
    [44]
    MB, VS, RY S, AM R, JT, PG, SJ, NR S. LAMINA:a tool for rapid quantification of leaf size and shape parameters[J]. BMC Plant Biol, 2008, 8(1):82-91.
    [45]
    Ikeda M, Hirose Y, Takashi T, Shibata Y, Yamamura T, Komura T, Doi K, Ashikari M, Matsuoka M, Kitano H. Analysis of rice panicle traits and detection of QTLs using an image analyzing method[J]. Breeding Sci, 2010, 60(1):55-64.
    [46]
    Thomas CL, Graham NS, Hayden R, Meacham MC, Neugebauer K, Nightingale M, Dupuy LX, Hammond JP, White PJ, Broadley MR. High-throughput phenotyping(HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.)[J]. Anna Bota, 2016, 118(4):655-665.
    [47]
    Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, Bryant DW, Hill ST, Mcentee CJ, Warnasooriya SN, Kumar I. A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availabi-lity in setaria[J]. Molec Plant, 2015, 8(10):1520-1535.
    [48]
    Kolukisaoglu V, Thurow K. Future and frontiers of automated screening in plant sciences[J]. Plant Sci, 2010, 178(6):476-484.
    [49]
    Clark RT, Maccurdy RB, Jung JK, Shaff JE, Mccouch SR, Aneshansley DJ, Kochian LV. Three-dimensional root phenotyping with a novel imaging and software platform[J]. Plant Physiol, 2011, 156(2):455-465.
    [50]
    Paproki A, Sirault X, Berry S, Furbank R, Fripp J. A novel mesh processing based technique for 3D plant analysis[J]. BMC Plant Biol, 2012, 12(1):1-13.
    [51]
    Watanabe T, Hanan JS, Room PM, Hasegawa T, Nakagawa H, Takahashi W. Rice morphogenesis and plant architecture:measurement, specification and the reconstruction of structural development by 3D architectural modelling[J]. Anna Bota, 2005, 95(7):1131-1143.
    [52]
    Kastberger G, Stachl R. Infrared imaging technology and biological applications[J]. Behav RMI CAJPS Inc, 2003, 35(3):429-439.
    [53]
    Gehan M. High-throughput phenotyping of brachypodium distachyon under progressive drought and heat stress[J]. Plant Anim Geno, 2015, 95(2):10-14.
    [54]
    Sakamoto T, Shibayama M, Kimura A, Takada E. Assessment of digital camera-derived vegetation indices in quantitative monitoring of seasonal rice growth[J]. Isprs J Photogram Remote Sen, 2011, 66(6):872-882.
    [55]
    Shibayama M, Sakamoto T, Takada E, Inoue A, Morita K, Takahashi W, Kimura A. Estimating paddy rice leaf area index with fixed point continuous observation of near infrared reflectance using a calibrated digital camera[J]. Plant Pro Sci, 2011, 14(1):30-46.
    [56]
    Shibayama M, Sakamoto T, Takada E, Inoue A, Morita K, Yamaguchi T, Takahashi W, Kimura A. Regression-based models to predict rice leaf area index using biennial fixed point continuous observations of near infrared digital images[J]. Plant Pro Sci, 2011, 14(4):365-376.
    [57]
    Siddiqui ZS, Cho JI, Park SH, Kwon TR, Lee GS, Jeong MJ, Kim KW, Lee SK, Park SC. Phenotyping of rice in salt stress environment using high-throughput infrared imaging[J]. Acta Bot Cro, 2014, 73(1):149-158.
    [58]
    Morales I, Álvaro JE, Urrestarazu M. Contribution of thermal imaging to fertigation in soilless culture[J]. J Therm Anal Calor, 2014, 116(2):1033-1039.
    [59]
    Allbed A, Kumar L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology:a review[J]. Adv Rem Sens, 2013, 2(4):373-385.
    [60]
    Pinter PJ, Fry KE, Guinn G, Mauney JR. Infrared thermometry:A remote sensing technique for predicting yield in water-stressed cotton[J]. Agricul Water Managem, 1983, 6(4):385-395.
    [61]
    Rullan-Silva CD, Olthoff AE, Delgado dI M, JA. Pajares-Alonso JA. Remote monitoring of forest insect defoliation. A review[J]. Forest System, 2013, 22(3):377-391.
    [62]
    Myneni RB, Maggion S, Iaquinta J, Privette JL, Gobron N, Pinty B, Kimes DS, Verstraete MM, Williams DL. Optical remote sensing of vegetation:modeling, caveats, and algorithms[J]. Rem Sens Environ, 1995, 51(51):169-188.
    [63]
    Munns R, James RA, Sirault XRR, Furbank RT, Jones HG. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit[J]. J Exp Bot, 2010, 61(13):3499-3507.
    [64]
    Pfeifer J, Kirchgessner N, Colombi T, Walter A. Rapid phenotyping of crop root systems in undisturbed field soils using x-ray computed tomography[J]. Plant Meth, 2015, 11(1):1-8.
    [65]
    Yang W, Xu X, Duan L, Luo Q, Chen S, Zeng S, Liu Q. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography[J]. Rev Sci Instrum, 2011, 82(2):102-107.
    [66]
    Jiang N, Yang W, Duan L, Xu X, Huang C, Liu Q. Acce-leration of CT reconstruction for wheat tiller inspection based on adaptive minimum enclosing rectangle[J]. Comput Elect Agri, 2012, 85(85):123-133.
    [67]
    Kuska M, Wahabzada M, Leucker M, Dehne HW, Kers-ting K, Oerke EC, Steiner U, Mahlein AK. Hyperspectral phenotyping on the microscopic scale:towards automated characterization of plant-pathogen interactions[J]. Plant Meth, 2015, 11(1):1-15.
    [68]
    Gan FP, Wang RS, Ai Nai MA, Yang SM. Investigation on physiological status of regional vegetation using pushbroom hyperspectral imager data[J]. J Integr Plant Biol, 2002, 44(8):983-989.
    [69]
    Walter A, Liebisch F, Hund A. Plant phenotyping:from bean weighing to image analysis[J]. Plant Meth, 2015, 11(1):1-11.
    [70]
    Topp CN. Field and lab-based phenotyping approaches to crop root growth dynamics[J]. Plant Anim Genom, 2014, 36(1):893-909.
    [71]
    Siegfried J, Menzel MI, Dagmar VD, Roeb GW, Jonas B, Senay M, Peter B, Temperton VM, Thomas H, Matthias S. Combined MRI-PET dissects dynamic changes in plant structures and functions[J]. Plant J, 2009, 59(4):634-644.
    [72]
    Garbout A, Munkholm LJ, Hansen SB, Petersen BM, Munk OL, Pajor R. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions[J]. Plant Soil, 2012, 352(1-2):113-127.
    [73]
    Borisjuk L, Rolletschek H, Neuberger T. Surveying the plant's world by magnetic resonance imaging[J]. Plant J, 2012, 70(1):129-146.
    [74]
    Gente R, Rehn A, Koch M. Contactless water status measurements on plants at 35 GHz[J]. J Infr Milli Tera Waves, 2014, 36(3):1-6.
    [75]
    Wang L V, Song H. Photoacoustic tomography:in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075):1458-1462.
    [76]
    Jansen M, Dornbusch T, Dornbusch T. Automated analysis of disease symptoms using lemnatec scanalyzer (HTS)[J]. Plant Anim Genom, 2014, 12:1.
  • Related Articles

    [1]Gao Feng, Deng Guocui, Zhang Wu, Zhang Yechi, Gong Yanbing. Assessing microbial diversity in anthers of Eriobotrya japonica (Thunb.) Lindl. based on high-throughput sequencing[J]. Plant Science Journal, 2025, 43(1): 32-40. DOI: 10.11913/PSJ.2095-0837.24270
    [2]Shen Tao, Wang Yuan-Zhong. Phenotypic characteristics and comprehensive evaluation of high-quality germplasm resources of Gentiana rigescens Franch. ex Hemsl.[J]. Plant Science Journal, 2023, 41(4): 479-489. DOI: 10.11913/PSJ.2095-0837.22227
    [3]Wang Zhen, Zhang Zhan-Ping, Kong Ling-Yang, Liu Mei-Qi, Lu Jia-Xin, Ren Wei-Chao, Liu Xiu-Bo, Ma Wei. Characterization and phylogenetic analysis of the complete chloroplast genome of Dictamnus dasycarpus Turcz.[J]. Plant Science Journal, 2023, 41(2): 139-148. DOI: 10.11913/PSJ.2095-0837.22151
    [4]Han Fei, Huang Hong-Wen, Li Da-Wei, Zhang Qiong, Jiang Zheng-Wang, Liu Xiao-Li, Zhong Cai-Hong. Breeding and characterization of a new high-quality yellow-fleshed kiwifruit cultivar ‘Jinyuan’[J]. Plant Science Journal, 2019, 37(2): 171-180. DOI: 10.11913/PSJ.2095-0837.2019.20171
    [5]TANG Zhong-Hou, ZHANG Ai-Jun, CHEN Xiao-Guang, WEI Meng, JIN Rong, LI Hong-Min. Breeding and Appraisal of New Sweetpotato Cultivar ‘Xushu 32’ with High Quality[J]. Plant Science Journal, 2016, 34(5): 781-789. DOI: 10.11913/PSJ.2095-0837.2016.50781
    [6]WEN Shu-Sheng, CHENG Fang-Yun, ZHONG Yuan, WANG Xin, LI Liu-Zemu, HUANG Nong-Zhang. Protocol for the Micropropagation of Tree Peony (Paeonia × lemoinei ‘High Noon’)[J]. Plant Science Journal, 2016, 34(1): 143-150. DOI: 10.11913/PSJ.2095-0837.2016.10143
    [7]MI Qi, LONG Zhi-Cheng, MUCHUKU John Kamau, CHEN Jin-Ming, WANG Qing-Feng. Development of SSR Markers in Giant Lobelia (Lobelia deckenii) Based on Next-generation High-throughput Sequencing[J]. Plant Science Journal, 2015, 33(6): 847-854. DOI: 10.11913/PSJ.2095-0837.2015.60847
    [8]BAN Jian-Jiao, FENG Jia, XIE Shu-Lian. Isolation and Screening of Microalgae with High-lipid Contents in Shanxi Province[J]. Plant Science Journal, 2013, 31(4): 415-421. DOI: 10.3724/SP.J.1142.2013.40415
    [9]LIU Yi-Chao, XIAO Jian-Zhong, YANG Ji-Shuang. Effect of High Temperature Stress on Electrical Impedance Spectroscopy Parameters of Chrysanthemum[J]. Plant Science Journal, 2012, (2): 198-203. DOI: 10.3724/SP.J.1142.2012.20198
    [10]ZHANG Hong, CAI Qing. Primary Study on the Storage of Kiwifruit in the High Latitude Area[J]. Plant Science Journal, 2001, 19(4): 323-326.
  • Cited by

    Periodical cited type(9)

    1. 刘晨, 樊鸿瑞, 周明兵, 周小红. 山核桃PAL基因家族的全基因组鉴定及表达模式分析. 浙江农林大学学报. 2025(04)
    2. 王何泽, 母德锦, 陈思慧, 田自能, 唐军荣. 云南金花茶苯丙氨酸解氨酶基因CfPAL的克隆及体外酶活鉴定. 山东农业科学. 2025(05)
    3. 张文香,杨再琴,潘柔柔,罗倩倩,吴超,曹剑锋. 百蕊草苯丙氨酸解氨酶基因的克隆与表达分析. 分子植物育种. 2025(04): 1098-1104 .
    4. 赵咏洋,陈维嘉,丁静峰,敖以恒,冯傲,周嘉裕. 决明苯丙氨酸解氨酶(PAL)基因家族的全基因组分析. 湖北农业科学. 2023(06): 181-187 .
    5. 杨翠凤,滕峥,韦春,刘正鲁. 百香果苯丙氨酸解氨酶基因PePAL克隆及表达分析. 河南农业科学. 2023(10): 100-108 .
    6. 周成城,谢德金,万志庭,陈凌艳,郑郁善. 巴戟天苯丙烷类代谢途径相关基因的克隆与表达. 应用与环境生物学报. 2021(01): 158-166 .
    7. 郭英男,刘月扬,马静雨,张敬,马鑫彤,张馨月,刘建雨,姚娜,刘秀明,李海燕. 红花PAL家族全基因组分析及其在悬浮细胞中的表达. 中草药. 2021(11): 3362-3372 .
    8. 乔枫,贺杰,耿贵工,王汉,张勐,郭晨微,陈剑云,谢惠春. 铯胁迫下青稞幼苗生理指标和苯丙氨酸解氨酶基因表达的变化. 分子植物育种. 2020(24): 8255-8266 .
    9. 赵历强,单春苗,张声祥,施圆圆,马克龙,吴家文. 基于转录组测序的细风轮花青素合成途径及关键酶基因分析. 植物研究. 2020(06): 886-896 .

    Other cited types(5)

Catalog

    Article views (1799) PDF downloads (3625) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return