Advance Search
MI Qi, LONG Zhi-Cheng, MUCHUKU John Kamau, CHEN Jin-Ming, WANG Qing-Feng. Development of SSR Markers in Giant Lobelia (Lobelia deckenii) Based on Next-generation High-throughput Sequencing[J]. Plant Science Journal, 2015, 33(6): 847-854. DOI: 10.11913/PSJ.2095-0837.2015.60847
Citation: MI Qi, LONG Zhi-Cheng, MUCHUKU John Kamau, CHEN Jin-Ming, WANG Qing-Feng. Development of SSR Markers in Giant Lobelia (Lobelia deckenii) Based on Next-generation High-throughput Sequencing[J]. Plant Science Journal, 2015, 33(6): 847-854. DOI: 10.11913/PSJ.2095-0837.2015.60847

Development of SSR Markers in Giant Lobelia (Lobelia deckenii) Based on Next-generation High-throughput Sequencing

More Information
  • Received Date: May 28, 2015
  • Published Date: December 27, 2015
  • To develop co-dominant microsatellite molecular markers (SSRs) for studying conservation genetics of the giant lobelia endemic to east Africa, we sequenced the genome of the giant lobelia, Lobelia deckenii, using next-generation high-throughput sequencing technology. Using the MISA program, we acquired a total of 58966 SSRs, from which we designed 3558 SSR primer pairs using Primer software. We selected 40 primer pairs at random to evaluate their application across six individuals from three L.deckenii populations (two individuals per population). Thirty-two markers were successfully amplified, yielding clear and discernible bands. Using 24 L.deckenii individuals from the Mountain Kenya population, we tested the polymorphism of the 32 SSR markers and found that 14 were polymorphic. Using these 14 polymorphic SSR markers, we detected a total of 86 alleles. The number of alleles per locus ranged from four to nine. Observed heterozygosity (Ho) and expected value (He) per locus varied from 0.000 to 1.000 and 0.625 to 0.854, respectively. Our results indicated that development of SSR markers from genomic data by high-throughput sequencing in the giant lobelia was valuable and effective. These newly generated SSR markers will provide novel tools for studying genetic diversity, population genetic structure and conservation biology of giant lobelias in east Africa.
  • [1]
    Knox EB. The conservation status of the giant senecios and giant lobelias in eastern Africa[J]. Opera Bot, 1993, 121: 195-216.
    [2]
    Knox EB, Palmer JD. Chloroplast DNA evidence on the origin and radiation of the giant lobelias in eastern Africa[J]. Syst Bot, 1998, 23(2):109-149.
    [3]
    Magombo ZLK, Mbeiza, Ndiritu N, Ndiritu, G.G. Lobelia aberdarica. The IUCN Red List of Threa-tened Species 2004: e.T44715A10939927. http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T44715A10939927.en
    [4]
    Mulugeta K, Dorothee E, Pierre T, Sileshi N, Christiana B. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains[J]. Mol Ecol, 2007, 16(6): 1233-1243.
    [5]
    Liao YY, Yue XL, Guo YH, Gituru WR, Wang QF, Chen JM. Genotypic diversity and genetic structure of populations of the distylous aquatic plant Nymphoides peltata (Menyanthaceae) in China[J]. J Syst Evol, 2013, 51 (5): 536-544.
    [6]
    高洁,李巧明. 羽叶金合欢的DNA提取和SSR引物筛选[J]. 云南植物研究, 2008, 30(1): 64-68.
    [7]
    程小毛,黄晓霞. SSR标记开发及其在植物中的应用[J]. 中国农学通报, 2011, 27(05): 304-307.
    [8]
    Li R, Zhu H, Ruan J, Qian W,Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J. De novo assembly of human genomes with massively parallel short read sequencing[J]. Genome Res, 2010, 20(2): 265-272.
    [9]
    袁阳阳,王青锋,陈进明. 基于转录组测序信息的水生植物莕菜SSR标记开发[J]. 植物科学学报, 2013, 31(5): 485-492.
    [10]
    Yeh FC B. Population genetic analysis of codominant and dominant markers and quantitative traits [J]. Belgian J Bot, 1997, 129: 157.
    [11]
    Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L. Identification characterization and utilization of EST derived genic microsatellite markers for genome analyses of coffee and related species[J]. Theor Appl Genet,2007, 114(2): 359-372.
    [12]
    Gupta PK, Varshney RK. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat[J]. Euphytica, 2000, 113(3): 163-185.
    [13]
    Wei WL, Qi XQ, Wang LH, Zhang YX, Hua W, Li DH, Lv HX, Zhang XR. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers[J]. BMC Genomics, 2011, 12(1): 451-463.
    [14]
    杨春霞,温强,叶金山,朱培林. 枳壳EST-SSR标记的开发[J]. 分子植物育种, 2011, 9(1): 123-127.
    [15]
    Kantety RV, La Rota M, Matthews DE, Sorrells ME. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat[J].Plant Mol Biol, 2002, 48(5-6): 501-510.
    [16]
    向华,毛盛贤. 固定指数理论及其在遗传育种中的应用[J]. 遗传, 1995, 17(S1): 63-70.
    [17]
    Truman PY. The comparative demography of semelparous Lobelia telekii and iteroparous Lobe-lia keniensis on Mount Kenya[J]. J Ecol, 1982, 72 (2): 637-650.
  • Related Articles

    [1]Lou Yong-Feng, Gan Ran, Zhu Cheng-Lei, Xiao Fu-Ming, Gao Zhi-Min. Development and application of EST-SSR markers based on transcriptome of Phyllostachys vivax McClure f. aureocaulis N. X. Ma[J]. Plant Science Journal, 2022, 40(3): 355-364. DOI: 10.11913/PSJ.2095-0837.2022.30355
    [2]Duan Yong-Hong, Zhang Xu, Liu Qing-Shan, Sun Yi. Construction of methylation linkage groups LGC and LGD with MSAP and SSR markers in Sorghum bicolor (L.) Moench[J]. Plant Science Journal, 2018, 36(2): 237-244. DOI: 10.11913/PSJ.2095-0837.2018.20237
    [3]ZHAO Jie, WANG Bin-Qi, JIA Xiao, TONG Yi-Qin, HE Yi-Fa, GE Tai-Ming. Development of SSR Markers to Assess Genetic Diversity in Osmunda japonica Thunb.[J]. Plant Science Journal, 2015, 33(6): 801-807. DOI: 10.11913/PSJ.2095-0837.2015.60801
    [4]LI Ting, QIN Dao-Feng, DAI Can. An Estimation of the Outcrossing Rate in Sagittaria trifolia Using SSR Fluorescence Markers[J]. Plant Science Journal, 2015, 33(4): 554-563. DOI: 10.11913/PSJ.2095-0837.2015.40554
    [5]GUO Hong-Yuan, JIA Ju-Qing, ZHANG Xian-Hong, LA Shi-Xiao, YANG Wu-De. Development and Application of EST-SSR Markers in Oat[J]. Plant Science Journal, 2014, 32(3): 240-250. DOI: 10.3724/SP.J.1142.2014.30240
    [6]QIU Dao-Shou, ZHENG Xi-Long, CAI Shi-Ke, ZHENG Jin-Rong, LUO Huan-Ming, ZHANG Lei, DENG Rui-Yun, LI Wu, LIU Xiao-Jin. Development and Transfer Analysis of SSR in Dendrobium[J]. Plant Science Journal, 2013, 31(5): 500-509. DOI: 10.3724/SP.J.1142.2013.50500
    [7]LIU Jie, HU Die, CHU Hai-Jia, YAN Juan, LI Jian-Qiang. Screening of Drought- and Salinity-responsive EST-SSR Markers in Medicago ruthenica Trautv.[J]. Plant Science Journal, 2013, 31(5): 493-499. DOI: 10.3724/SP.J.1142.2013.50493
    [8]YUAN Yang-Yang, WANG Qing-Feng, CHEN Jin-Ming. Development of SSR Markers in Aquatic Plant Nymphoides peltata (Menyanthaceae) Based on Information from Transcriptome Sequencing[J]. Plant Science Journal, 2013, 31(5): 485-492. DOI: 10.3724/SP.J.1142.2013.50485
    [9]CHEN Jin-Jin, PENG Jun-Hua. Transferability of Wheat(Triticum aestivum)EST-derived SSR Markers to Several Potential Energy Plants in Gramineae[J]. Plant Science Journal, 2011, 29(6): 696-703.
    [10]LONG Song-Hua, LI Xiang, DENG Xin, WANG Yu-Fu, WANG Jing, HE Dong-Feng, CHEN Xin-Bo. Flax (Linum sitatissimum L.) EST-SSR Information Analysis and Marker Development[J]. Plant Science Journal, 2010, 28(5): 634-638.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (2381) PDF downloads (1393) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return