Citation: | Zhao Gui-Hong, Shi Hong, Zhang Ni-Ni, Lu Miao, Wang Jing, Li Tao. Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort[J]. Plant Science Journal, 2017, 35(1): 64-72. DOI: 10.11913/PSJ.2095-0837.2017.10064 |
[1] |
陈宇航, 郭巧生, 邓乔华, 田汉卿. 菘蓝不同种质活性成分动态积累及其药材品质比较[J]. 中国中药杂志, 2012, 37(11):1541-1545.
Chen YH, Guo QS, Deng QH, Tian HQ. Dynamic accumulations of bioactive components in different germplasm Isatis indigotica and comparative of its quality of medical material[J]. China Journal of Chinese Materia Medica, 2012, 37(11):1541-1545.
|
[2] |
杨飞, 徐延浩. 四倍体菘蓝基因组DNA甲基化的甲基化敏感扩增多态性分析[J]. 中草药, 2013, 44(3):344-348.
Yang F, Xu YH. Analysis on genome DNA methylation of tetraploid Isatis indigotica by methylation sensitive amplification polymorphism[J]. Chinese Traditional and Herbal Drugs, 2013, 44(3):344-348.
|
[3] |
郑剑玲, 王美惠, 杨秀珍, 吴立军. 大青叶和板蓝根提取物的抑菌作用研究[J]. 中国微生态学杂志, 2003, 15(1):18-19.
Zheng JL, Wang MH, Yang XZ, Wu LJ. Study on bacte-riostasis of Isatis indigotic Fort.[J]. Chinese Journal of Microecology, 2003, 15(1):18-19.
|
[4] |
赵宇, 孔稳稳, 沙伟, 李晶. 脂肪族芥子油苷侧链修饰酶基因[STXFX]FMOGS-OX4[STXFZ]表达模式分析[J]. 植物科学学报, 2013, 31(4):406-414.
Zhao Y, Kong WW, Sha W, Li J. Expression pattern of[STXFX]FMOGS-OX4,[STXFZ] a biosynthetic gene involved in aliphatic glucosinolate side-chain modification[J]. Plant Science Journal, 2013, 31(4):406-414.
|
[5] |
Yan XF, Chen SX. Regulation of plant glucosinolate metabolism[J]. Planta, 2007, 226(6):1343-1352.
|
[6] |
Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa[J]. Gene, 2011, 487(2):135-142.
|
[7] |
陈亚州, 阎秀峰. 芥子油苷在植物-生物环境关系中的作用[J]. 生态学报, 2007, 27(6):2584-2593.
Chen YZ, Yan XF. The role of glucosinolates in plant-biotic environment interactions[J]. Acta Ecologica Sinica, 2007, 27(6):2584-2593.
|
[8] |
Plate AYA, Gallaher DD. Effects of indole-3-carbinol and phenethyl isothiocyanate on colon carcinogenesis induced by azoxymethane in rats[J]. Carcinogenesis, 2006, 27(2):287-292.
|
[9] |
Wittstock U, Halkier BA. Glucosinolate research in the Arabidopsis era.[J]. Trends Plant Sci, 2002, 7(6):263-270.
|
[10] |
Zhu B, Wang Z, Yang J, Zhu Z, Wang H. Isolation and expression of glucosinolate synthesis genes[STXFX]CYP83A1 and CYP83B1[STXFZ] in pak choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S. H. Lee) Hanelt)[J]. Int J Mol Sci, 2012, 13(5):5832-5843.
|
[11] |
Grubb CD, Abel S. Glucosinolate metabolism and its control[J]. Trends Plant Sci, 2006, 11(2):89-100.
|
[12] |
Grubb CD, Zipp BJ, Ludwig-Mülle J, Masuno MN, Molinski TF, Abel S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis[J]. Plant J, 2004, 40(6):893-908.
|
[13] |
Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C. The[STXFX]SUR2[STXFZ] gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulat or of auxin homeostasis[J]. Proc Natl Acad Sci USA, 2000, 97(26):14819-14824.
|
[14] |
Bak S, Feyereisen R. The involvement of two P450 Enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis[J]. Plant Physiol, 2001, 127(1):108-118.
|
[15] |
Bak S, Tax FE, Fedmann KA, Galbraitha DW, Feyereisena R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis[J]. Plant Cell, 2001, 13(1):101-111.
|
[16] |
Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metaboli-zing oximes in the biosynthesis of glucosinolates in Arabidopsis[J]. Plant Physiol, 2003, 133(1):63-72.
|
[17] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4), 402-408.
|
[18] |
Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides:SignalP 3.0[J]. J Mol Biol, 2004, 340(4):783-795.
|
[19] |
郭文芳, 刘德春, 杨莉, 庄霞, 张涓涓, 王书胜, 刘勇. 柑橘[STXFX]MYB15[STXFZ]基因的克隆与表达分析[J]. 植物科学学报, 2015, 33(6):808-818.
Guo WF, Liu DC, Yang L, Zhuang X, Zhang JJ, Wang SS, Liu Y. Cloning and expression analysis of[STXFX]MYB15[STXFZ] genes from Citrus[J]. Plant Science Journal, 2015, 33(6):808-818.
|
[20] |
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modeling[J]. Bioinformatatics, 2006, 22(2):195-201.
|
[21] |
石璐, 李梦莎, 王丽华, 于萍, 李楠, 国静, 阎秀峰. COI1参与茉莉酸调控拟南芥吲哚族芥子油苷生物合成过程[J]. 生态学报, 2012, 32(17):5438-5444.
Shi L, Li MS, Wang LH, Yu P, Li N, Guo J, Yan XF. COI1 is involved in jasmonate-induced indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Acta Ecolo-gica Sinica, 2012, 32(17):5438-5444.
|
[22] |
Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Mol Plant, 2014, 7(5):814-828.
|
[23] |
Schreiner M, Krumbein A, Knorr D, Smetanska I. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate[J]. J Agric Food Chem, 2011, 59(4):1400-1405.
|
[24] |
Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I. DOF transcription factor AtDof1.1(OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis[J]. Plant J, 2006, 47(1):10-24.
|
[25] |
Kliebenstein DJ, Figuth A, Mitchell-Olds T. Genetic architecture of plastic methyl jasmonate response in Arabidopsis thaliana[J]. Genetics, 2002, 161(4):1685-1696.
|
[26] |
Wei J, Miao H, Wang Q. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts[J]. Sci Hortic, 2011, 129(4):535-540.
|
[27] |
Gigolashvili T, Yatusevich R, Berger B, Müller C, Flugge UI. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana[J]. Plant J, 2007, 51(2):247-261.
|
[28] |
Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW. Establishing glucose-and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine[J]. Genome Res, 2006, 16(3):414-427.
|