Advance Search
Zhao Gui-Hong, Shi Hong, Zhang Ni-Ni, Lu Miao, Wang Jing, Li Tao. Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort[J]. Plant Science Journal, 2017, 35(1): 64-72. DOI: 10.11913/PSJ.2095-0837.2017.10064
Citation: Zhao Gui-Hong, Shi Hong, Zhang Ni-Ni, Lu Miao, Wang Jing, Li Tao. Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort[J]. Plant Science Journal, 2017, 35(1): 64-72. DOI: 10.11913/PSJ.2095-0837.2017.10064

Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31200221), Fundamental Research Funds for the Central Universities (GK201405001), and Innovation Funds of Graduate Programs, SNNU (2015CXS025).

More Information
  • Received Date: June 13, 2016
  • Available Online: October 31, 2022
  • Published Date: February 27, 2017
  • The CYP83B1 gene of Isatis indigotica Fort. was cloned and its expression patterns were analyzed. Results showed that the length of the IiCYP83B1 gene was 1652 bp, and included two exons and one intron. The full length cDNA of IiCYP83B1 was 1500 bp, encoding a protein of 499 amino acids. IiCYP83B1 was a hydrophobic protein located in the endoplasmic reticulum, without a transmembrane domain or signal peptide. Its secondary structure mainly included alpha helixes and irregular coils. Homologous comparison illustrated that IiCYP83B1 has close relationship with Raphanus sativus Linn., Brassica napus L., Brassica oleracea L., and Brassica rapa L. qRT-PCR analysis indicated that IiCYP83B1 was expressed in root, stem, flower, and fruit, and highly expressed in leaf. It was also highly expressed in the seedling, vegetative growth, and flowering stages, compared with the germination period. Moreover, IiCYP83B1 could be induced significantly by methyl jasmonate (MeJA) and glucose (Glu), but repressed by low temperature (4℃) and salicylic acid (SA). Results in this experiment provide reference for further functional study on IiCYP83B1.
  • [1]
    陈宇航, 郭巧生, 邓乔华, 田汉卿. 菘蓝不同种质活性成分动态积累及其药材品质比较[J]. 中国中药杂志, 2012, 37(11):1541-1545.

    Chen YH, Guo QS, Deng QH, Tian HQ. Dynamic accumulations of bioactive components in different germplasm Isatis indigotica and comparative of its quality of medical material[J]. China Journal of Chinese Materia Medica, 2012, 37(11):1541-1545.
    [2]
    杨飞, 徐延浩. 四倍体菘蓝基因组DNA甲基化的甲基化敏感扩增多态性分析[J]. 中草药, 2013, 44(3):344-348.

    Yang F, Xu YH. Analysis on genome DNA methylation of tetraploid Isatis indigotica by methylation sensitive amplification polymorphism[J]. Chinese Traditional and Herbal Drugs, 2013, 44(3):344-348.
    [3]
    郑剑玲, 王美惠, 杨秀珍, 吴立军. 大青叶和板蓝根提取物的抑菌作用研究[J]. 中国微生态学杂志, 2003, 15(1):18-19.

    Zheng JL, Wang MH, Yang XZ, Wu LJ. Study on bacte-riostasis of Isatis indigotic Fort.[J]. Chinese Journal of Microecology, 2003, 15(1):18-19.
    [4]
    赵宇, 孔稳稳, 沙伟, 李晶. 脂肪族芥子油苷侧链修饰酶基因[STXFX]FMOGS-OX4[STXFZ]表达模式分析[J]. 植物科学学报, 2013, 31(4):406-414.

    Zhao Y, Kong WW, Sha W, Li J. Expression pattern of[STXFX]FMOGS-OX4,[STXFZ] a biosynthetic gene involved in aliphatic glucosinolate side-chain modification[J]. Plant Science Journal, 2013, 31(4):406-414.
    [5]
    Yan XF, Chen SX. Regulation of plant glucosinolate metabolism[J]. Planta, 2007, 226(6):1343-1352.
    [6]
    Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa[J]. Gene, 2011, 487(2):135-142.
    [7]
    陈亚州, 阎秀峰. 芥子油苷在植物-生物环境关系中的作用[J]. 生态学报, 2007, 27(6):2584-2593.

    Chen YZ, Yan XF. The role of glucosinolates in plant-biotic environment interactions[J]. Acta Ecologica Sinica, 2007, 27(6):2584-2593.
    [8]
    Plate AYA, Gallaher DD. Effects of indole-3-carbinol and phenethyl isothiocyanate on colon carcinogenesis induced by azoxymethane in rats[J]. Carcinogenesis, 2006, 27(2):287-292.
    [9]
    Wittstock U, Halkier BA. Glucosinolate research in the Arabidopsis era.[J]. Trends Plant Sci, 2002, 7(6):263-270.
    [10]
    Zhu B, Wang Z, Yang J, Zhu Z, Wang H. Isolation and expression of glucosinolate synthesis genes[STXFX]CYP83A1 and CYP83B1[STXFZ] in pak choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S. H. Lee) Hanelt)[J]. Int J Mol Sci, 2012, 13(5):5832-5843.
    [11]
    Grubb CD, Abel S. Glucosinolate metabolism and its control[J]. Trends Plant Sci, 2006, 11(2):89-100.
    [12]
    Grubb CD, Zipp BJ, Ludwig-Mülle J, Masuno MN, Molinski TF, Abel S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis[J]. Plant J, 2004, 40(6):893-908.
    [13]
    Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C. The[STXFX]SUR2[STXFZ] gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulat or of auxin homeostasis[J]. Proc Natl Acad Sci USA, 2000, 97(26):14819-14824.
    [14]
    Bak S, Feyereisen R. The involvement of two P450 Enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis[J]. Plant Physiol, 2001, 127(1):108-118.
    [15]
    Bak S, Tax FE, Fedmann KA, Galbraitha DW, Feyereisena R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis[J]. Plant Cell, 2001, 13(1):101-111.
    [16]
    Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metaboli-zing oximes in the biosynthesis of glucosinolates in Arabidopsis[J]. Plant Physiol, 2003, 133(1):63-72.
    [17]
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4), 402-408.
    [18]
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides:SignalP 3.0[J]. J Mol Biol, 2004, 340(4):783-795.
    [19]
    郭文芳, 刘德春, 杨莉, 庄霞, 张涓涓, 王书胜, 刘勇. 柑橘[STXFX]MYB15[STXFZ]基因的克隆与表达分析[J]. 植物科学学报, 2015, 33(6):808-818.

    Guo WF, Liu DC, Yang L, Zhuang X, Zhang JJ, Wang SS, Liu Y. Cloning and expression analysis of[STXFX]MYB15[STXFZ] genes from Citrus[J]. Plant Science Journal, 2015, 33(6):808-818.
    [20]
    Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modeling[J]. Bioinformatatics, 2006, 22(2):195-201.
    [21]
    石璐, 李梦莎, 王丽华, 于萍, 李楠, 国静, 阎秀峰. COI1参与茉莉酸调控拟南芥吲哚族芥子油苷生物合成过程[J]. 生态学报, 2012, 32(17):5438-5444.

    Shi L, Li MS, Wang LH, Yu P, Li N, Guo J, Yan XF. COI1 is involved in jasmonate-induced indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Acta Ecolo-gica Sinica, 2012, 32(17):5438-5444.
    [22]
    Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Mol Plant, 2014, 7(5):814-828.
    [23]
    Schreiner M, Krumbein A, Knorr D, Smetanska I. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate[J]. J Agric Food Chem, 2011, 59(4):1400-1405.
    [24]
    Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I. DOF transcription factor AtDof1.1(OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis[J]. Plant J, 2006, 47(1):10-24.
    [25]
    Kliebenstein DJ, Figuth A, Mitchell-Olds T. Genetic architecture of plastic methyl jasmonate response in Arabidopsis thaliana[J]. Genetics, 2002, 161(4):1685-1696.
    [26]
    Wei J, Miao H, Wang Q. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts[J]. Sci Hortic, 2011, 129(4):535-540.
    [27]
    Gigolashvili T, Yatusevich R, Berger B, Müller C, Flugge UI. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana[J]. Plant J, 2007, 51(2):247-261.
    [28]
    Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW. Establishing glucose-and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine[J]. Genome Res, 2006, 16(3):414-427.
  • Related Articles

    [1]Huang Ying, Zhai Lu, Xie Ling-Li, Xu Jin-Song, Zhang Xue-Kun, Xu Ben-Bo. Genome-wide identification and expression analysis of the MAP70 gene family in Brassica napus L.[J]. Plant Science Journal, 2023, 41(5): 647-656. DOI: 10.11913/PSJ.2095-0837.22245
    [2]Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140
    [3]Jiang Si-Si, Zhou Jun-Qin, Lu Meng-Qi, Yuan Jun. CAT activity and related gene expression in the pistil of self- and cross-pollinated Camellia oleifera Abel.[J]. Plant Science Journal, 2022, 40(6): 810-819. DOI: 10.11913/PSJ.2095-0837.2022.60810
    [4]Han Yu-Xin, Dai Hong-Wei, Zheng Shu-Ting, Tong Hua-Rong, Yuan Lian-Yu. Identification and expression analysis of the DELLA gene family in Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 644-653. DOI: 10.11913/PSJ.2095-0837.2020.50644
    [5]Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503
    [6]Dang Ren-Mei, Zheng Wen-Jie, Ding Ning, Wen Shan-Shan. Cloning and stress expression analysis of the TaHDA19 gene in Triticum aestivum[J]. Plant Science Journal, 2019, 37(4): 495-502. DOI: 10.11913/PSJ.2095-0837.2019.40495
    [7]Guo Qi-Ping, Zhang Shan, Liu Yuan-Yuan, Tian Shu-Jun, Li Chun-Lian, Wen Shan-Shan. Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL[J]. Plant Science Journal, 2019, 37(3): 374-381. DOI: 10.11913/PSJ.2095-0837.2019.30374
    [8]Qin Zheng, Zheng Yong-Jie, Zhang Wen-Gen, Zhang Long, Li Zu-Yao, Yang Guang-Yao. Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(4): 575-585. DOI: 10.11913/PSJ.2095-0837.2018.40575
    [9]FAN Jin-Ping, ZHAO Ran. Cloning and Expression Pattern Analysis of the ApNAP Gene in Asarina procumbens[J]. Plant Science Journal, 2014, 32(3): 251-258. DOI: 10.3724/SP.J.1142.2014.30251
    [10]SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346.

Catalog

    Article views (1214) PDF downloads (974) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return