Advance Search
Lu Yan, Qi Yan, Zhang Xiao-Min, Chen Yi-Fang, Wang Li, Ling Yu-Ping. Optimization of water-rich starch sample preparation methods for scanning electron microscopy[J]. Plant Science Journal, 2018, 36(1): 119-126. DOI: 10.11913/PSJ.2095-0837.2018.10119
Citation: Lu Yan, Qi Yan, Zhang Xiao-Min, Chen Yi-Fang, Wang Li, Ling Yu-Ping. Optimization of water-rich starch sample preparation methods for scanning electron microscopy[J]. Plant Science Journal, 2018, 36(1): 119-126. DOI: 10.11913/PSJ.2095-0837.2018.10119

Optimization of water-rich starch sample preparation methods for scanning electron microscopy

Funds: 

This work was supported by a grant from the Jiangsu Natural Science Foundation (BK20160464).

More Information
  • Received Date: June 07, 2017
  • Available Online: October 31, 2022
  • Published Date: February 27, 2018
  • In general, biological samples must be dehydrated and dried before high vacuum scanning electron microscopy (SEM) analysis. However, during the critical point-drying or freeze-drying treatment process, samples with high water content will shrink or collapse, whereas for starch rich plant samples, tissues are prone to starch loss and cell wall deformation, resulting in poor quality scanning images. By comparing three pre-treatment methods of SEM, including CO2 critical point drying, freeze drying of chemically fixed samples, and freeze drying of fresh samples, we optimize suitable methods as follows:(1) Sample are first chemically fixed and then freeze dried, followed by brittle fracture with liquid nitrogen, with the cross-sections finally spray-coated with gold. With this treatment, the SEM images are of high quality, with the cell structure maintained and starch grains and protein complexes clear. This method can be used for analysis of the intracellular distribution of starch grains and protein. (2) Fresh samples are freeze dried directly, and after brittle fracture with liquid nitrogen, the cross-sections are finally spray-coated with gold. With this treatment, the SEM images are of high quality, with complete cell walls and clear starch granules. This is an optimal method for observation of starch granule distribution.
  • [1]
    Bello MA, Ruiz-Leon Y, Sandoval-Sierra JV, Rezinciuc S, Diéguez-Uribeondo J. Scanning electron microscopy (SEM) protocols for problematic plant, oomycete, and fungal samples[J]. J Vis Exp, 2017, 120:e55031.
    [2]
    Endress PK, Baas P, Gregory M. Systematic plant morphology and anatomy:50 years of progress[J].Taxon, 2000, 49(3):401-434.
    [3]
    肖媛, 刘伟, 汪艳, 左艳霞, 胡锐,等. 生物样品的扫描电镜制样干燥方法[J]. 实验室研究与探索, 2013, 32(5):45-53.

    Xiao Y, Liu W, Wang Y, Zuo YX, Hu R, et al. Drying methods of biological sample preparation for scanning electron microscope[J]. Reseach and Exploration Laboratory, 2013, 32(5):45-53.
    [4]
    Fannes W, Vanhove MPM, Huyse T, Paladini G. A scanning electron microscope technique for studying the sclerites of Cichlidogyrus[J]. Parasitol Res, 2015, 114(5):2031-2034.
    [5]
    Singh A, Ansari MW, Rani V, Singh CP, Shukla A, et al. First evidence of putrescine involvement in mitigating the floral malformation in mangoes:a scanning electron microscope study[J]. Protoplasma, 2014, 251(5):1255-1261.
    [6]
    Wang RC, Chen C, Guo ST. Effects of drying methods on starch crystallinity of gelatinized foxtail millet (α-millet) and its eating quality[J]. J Food Eng, 2017, 207:81-89.
    [7]
    Lu Y, Jin B, Wang L, Wang Y, Wang D, et al. The male reproductive structures adapted to wind pollination in gymnosperms:male cone and pollen grain[J]. Can J Plant Sci, 2011, 91:897-906.
    [8]
    Colak G, Baykul MC, Gurler R, Catak E, Caner N. Investigation of the effects of aluminium stress on some macro and micro-nutrient contents of the seedlings of Lycopersicon esculentum Mill. by using scanning electron microscope[J]. Pak J Bot, 2014, 46(1):147-160.
    [9]
    Cai CH, Wei CX. In situ observation of crystallinity disruption patterns during starch gelatinization[J]. Carbohyd Polym, 2013, 92(1):469-478.
    [10]
    Huang J, Zhao LX, Huai HY, Li EP, Zhang FM, Wei CX. Structural and functional properties of starches from wild Trapa quadrispinosa, japonica, mammillifera and incisa[J]. Food Hydrocolloids, 2015, 48:117-126.
    [11]
    Zhang CQ, Chen SJ, Ren XY, Lu Y, Liu DR, et al. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity[J]. J Agric Food Chem, 2017, 65(10):2222-2232.
    [12]
    Fan XX, Zhao LX, Zhang L, Xu B, Wei CX. A new allomorph distribution of C-type starch from root tuber of Apios fortunei[J]. Food Hydrocolloids, 2017, 66:334-342.
    [13]
    郭素枝. 扫描电镜技术及其应用[M]. 厦门:厦门大学出版社, 2006:74-84.
    [14]
    Aoyama Y, Suzuki K, Tabe Y, Chikahisa T. Observation of water transport in the micro-porous layer of a polymer electrolyte fuel cell with a freezing method and cryo-scanning electron microscope[J]. Electrochem Commun, 2014, 41:72-75.
    [15]
    Sempere F, Santamarina MP. Cryo-scanning electron microscopy and light microscopy for the study of fungi inte-ractions[J]. Microsc Res Techniq, 2011, 74:207-211.
    [16]
    孙猛, 胡泽章, 吕兵, 翟一凡, 陈浩,等. 东亚小花蝽触角的扫描电镜观察[J]. 中国生物防治学报, 2017, 33(2):176-182.

    Sun M, Hu ZZ, Lü B, Zhai YF, Chen H, et al. Scanning electron microscope observations of antenna of Orius sauteri (Poppius)[J]. Chinese Journal of Biological Control, 2017, 33(2):176-182.
    [17]
    Arreche R, Bellotti N, Deyá C, Vázquez P. Assessment of waterborne coatings formulated with sol-gel/Ag related to fungal growth resistance[J]. Prog Org Coat, 2017, 108:36-43.
    [18]
    许自龙, 汪阳东, 陈益存, 高暝, 徐刚标, 何关顺. 山鸡椒雄花花芽发育形态解剖特征观察[J]. 植物科学学报, 2017, 35(2):152-163.

    Xu ZL, Wang YD, Chen YC, Gao M, Xu GB, He GS. Observation of the morphological and anatomial characteristics of male flower bud development in Litsea cubeba (Lour.) Pers[J]. Plant Science Journal, 2017, 35(2):152-163.
    [19]
    赵芸玉, 夏晓飞, 熊彪, 祖奎玲, 赵良成. 臭椿不同发育阶段叶片表面结构特征[J]. 植物科学学报, 2016, 34(2):182-190.

    Zhao YY, Xia XF, Xiong B, Zu KL, Zhao LC. Leaf epidermal features of Ailanthus altissima (Mill.) swingle indiffe-rent development stages[J]. Plant Science Journal, 2016, 34(2):182-190.
    [20]
    Lu Y, Wang L, Wang D, Wang Y, Zhang M, et al. Male cone morphogenesis, pollen development and pollen dispersal mechanism in Ginkgo bilobaL.[J].Can J Plant Sci, 2011, 91:971-981.
    [21]
    周喜乐, 严岳鸿, 赵国华, 刘红梅. 14种剑蕨属植物的孢子形态特征及其系统分类学意义[J]. 植物科学学报, 2016, 34(5):669-679.

    Zhou XL, Yan YH, Zhao GH, Liu HM. Spore morphology of Loxogramme (Blume) C. Presl and its taxonomic signi-ficance[J]. Plant Science Journal, 2016, 34(5):669-679.
    [22]
    郝天雪, 宋海慧, 崔琳, 王学东. 大豆根瘤的扫描电镜观察[J]. 电子显微学报, 2017, 36(2):167-172.

    Hao TX, Song HH, Cui L, Wang XD. Observation of soybean nodule by scanning electron microscope[J]. Journal of Chinese Electron Microscopy Society, 2017, 36(2):167-172.
    [23]
    Wang D, Lu Y, Zhang M, Lu ZG, Luo KG, et al. Structure and function of the neck cell during fertilization in Ginkgo bilobaL.[J].Trees, 2014, 28:995-1005.
  • Related Articles

    [1]Zhu Kai, Fan Yingxuan, Zuo Qihui, Tan Siyu, Liu Fenwu, Zhang Jian, Qin Junmei, Gao Lina. Photosynthetic limitation in soybean in response to soil water-nitrogen interactions and its relationship with leaf water use efficiency[J]. Plant Science Journal, 2024, 42(5): 634-643. DOI: 10.11913/PSJ.2095-0837.24036
    [2]Li Su-Hui, Chen Jin-Yi, Wang Jia-Min, Song Hai-Yan, Zhang Jing, Tao Jian-Ping, Liu Jin-Chun. Growth response of two annual herbs to karst soil depth and water supply[J]. Plant Science Journal, 2021, 39(3): 258-267. DOI: 10.11913/PSJ.2095-0837.2021.30258
    [3]Chen Mei-Yan, Zhao Ting-Ting, Peng Jue, Zhang Peng, Han Fei, Liu Xiao-Li, Zhong Cai-Hong. Multivariate analysis of relationship between soil nutrients and fruit quality in ‘Donghong’ kiwifruit (Actinidia chinensis var. chinensis) orchards[J]. Plant Science Journal, 2021, 39(2): 193-200. DOI: 10.11913/PSJ.2095-0837.2021.20193
    [4]Guan Shou-Peng, Chen Fang-Qing, Lü Kun, Zhou Ju-Mei, Xia Ping-Juan. Responses of biomass and components of Myricaria laxiflora seedlings to simulated soil water level changes[J]. Plant Science Journal, 2019, 37(4): 485-494. DOI: 10.11913/PSJ.2095-0837.2019.40485
    [5]DOU Xiao-Lin, LI Ming, WANG Wei-Bo, ZHANG Quan-Fa, CHENG Xiao-Li. Changes in Soil Nutrients in Different Eroded Soils in Pinus massoniana Forest Ecosystems in Fujian Province,China[J]. Plant Science Journal, 2012, (2): 161-168. DOI: 10.3724/SP.J.1142.2012.20161
    [6]LI Qing-Yu, ZHONG Zhang-Cheng, HE Yue-Jun. Effects of Soil Nutrients on Plasticity of Floral Characteristics in Iris japonica Thunb.[J]. Plant Science Journal, 2005, 23(6): 564-567.
    [7]Li Zhi'an, Wang Bosun, Lin Yongbiao, Zeng Youte. A REVIEW OF STUDY ON NUTRIENT RESORPTION OF PLANT[J]. Plant Science Journal, 2000, 18(3): 229-236.
    [8]Hou Songsheng, Li Xinming, Li Honglin, Wu Yulan. STUDIES ON PHYSIOLOGICAL AND BIOCHEMICAL CHARACTER IN SUSPENSION CULTURE OF BERBEBIS JULIANAE SCHNEID CELLS Ⅴ.CELL GROWTH,RESPIRATION,ABSORPTION AND CONSUMPTION OF MAJOR NUTRITIONAL ELEMENTS[J]. Plant Science Journal, 1995, 13(2): 163-166.
    [9]Shen Yinwu, Huang Zebo, Zhu Yunzhi, Wang Qianlin. THE ANALYSIS OF NUTRIENT COMPOSITION OF ANABAENA POWDER[J]. Plant Science Journal, 1994, 12(1): 61-64.
    [10]Ding Zhaohua. NUTRIENT FILM TECHNIQUE[J]. Plant Science Journal, 1986, 4(3): 303-309.
  • Cited by

    Periodical cited type(2)

    1. 张仕兰,王屿岑,刘文亮. 海三棱藨草及其近缘种的DNA条形码研究. 广西植物. 2024(04): 699-709 .
    2. 石佳,李文庭,康帅,张南平,马双成. 果实类药材的性状和显微鉴定研究现状. 药物分析杂志. 2021(08): 1288-1296 .

    Other cited types(4)

Catalog

    Article views (879) PDF downloads (1365) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return