Advance Search
Qin Zheng, Zheng Yong-Jie, Zhang Wen-Gen, Zhang Long, Li Zu-Yao, Yang Guang-Yao. Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(4): 575-585. DOI: 10.11913/PSJ.2095-0837.2018.40575
Citation: Qin Zheng, Zheng Yong-Jie, Zhang Wen-Gen, Zhang Long, Li Zu-Yao, Yang Guang-Yao. Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(4): 575-585. DOI: 10.11913/PSJ.2095-0837.2018.40575

Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)

Funds: 

This work was supported by a grant from the National Key Technology Research and Development Program (2015BAD04B01).

More Information
  • Received Date: March 01, 2018
  • Available Online: October 31, 2022
  • Published Date: August 27, 2018
  • To explore the characteristics and evolutionary relationships of the TPS family in Phyllostachys edulis, we identified the TPS genes in P.edulis and analyzed their physicochemical properties, gene structure, evolutionary relationship, protein secondary and tertiary structure, promoter elements, and expression patterns based on bioinformatics methods. A total of 14 TPS genes were identified in P. edulis, which ranged in size from 693 to 2439 bp. The encoding protein isoelectric points ranged from 5.08 to 8.17. Phylogenetic analysis suggested that the TPS family members from P. edulis could be divided into four subfamilies (a, b, e/f, g), with considerably different gene structures. The α-helix and random coil components in these proteins were dominant elements, and the predicted tertiary structure of the proteins in the PeTPS gene family were similar. We identified 50 cis-acting regulatory elements through promotor analyses, which were classified into six categories according to their function. The heatmap of gene expression based on the RNA-seq data revealed that the PeTPS genes were expressed differently among seven different tissues, including leaves, flowers, and shoots, and thus exhibited tissue-specific expression patterns. PeTPS9 was only expressed in the early panicle and PeTPS8 was only expressed in the leaves. This research provides a theoretical foundation for deeper analysis of the function of the TPS genes in P.edulis.
  • [1]
    Pinelli P, Tricoli D. A new approach to ozone plant fumigation:The Web-O3-Fumigation. Isoprene response to a gradient of ozone stress in leaves of Quercus pubescens[J]. iForest, 2008, 1(1):215-217.
    [2]
    Loreto F, Forster A, Durr M, Seufert G. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercusi lex L. fumigated with selected monoterpenes[J]. Plant Cell Environ, 1998, 21(1):101-107.
    [3]
    Attaran E, Rostás M, Zeier J. Pseudomonas syringae elicits emission of the terpenoid(E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4[J]. Mol Plant Microbe, 2008, 21(11):1482-1497.
    [4]
    Gil M, Pontin M, Berli F, Bottini R, Piccoli P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation[J]. Phytochemistry, 2012, 77(15-16):89-98.
    [5]
    Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants:a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. Plant Mol Biol, 2011, 66(1):212-229.
    [6]
    Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana[J]. Mol Genet Genomics, 2002, 267(6):730-745.
    [7]
    Toub O, Michel S, Laurent D, Schouwey MB, Sébastien A, et al. Functional annotation, genome organization and phylogeny of the Grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays[J]. BMC Plant Biol, 2010, 10(1):1-22.
    [8]
    Irmisch S, Jiang Y, Chen F, Gershenzon J, Kollner TG. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa)[J]. BMC Plant Biol, 2014, 14(1):270.
    [9]
    Chen H, Li G, Kollner TG, Jia Q, Gershenzon J, Chen F. Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza[J]. BMC Plant Biol, 2014, 14(1):239.
    [10]
    Liu J, Huang F, Wang X, Zhang M, Zheng R, et al. Genome-wide analysis of terpene synthases in soybean:functional characterization ofGmTPS3[J]. Gene, 2014, 544(1):83-92.
    [11]
    Yang CQ, Wu XM, Ruan JX, Wang JL. Isolation and cha-racterization of terpene synthases in cotton (Gossypium hirsutum)[J]. Phytochemistry, 2013, 96(12):46-56.
    [12]
    程甜, 魏强, 李广林. 中粒咖啡萜类合成酶基因家族的生物信息学分析[J]. 植物学报, 2016, 51(2):235-250.

    Tian C, Qiang W, Li GL. Bioinformatics analysis of the TPS gene family in Coffee canephora[J]. Chinese Bulletin of Botany, 2016, 51(2):235-250.
    [13]
    Falara V, Akhtar TA, Nguyen TT, Spyropoulou EA, Blee-ker PM, et al. The tomato terpene synthase gene family[J]. Plant Physiol, 2011, 157(2):770-789.
    [14]
    Peng Z, Lu Y, Li L, Zhao Q, Feng Q, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456.
    [15]
    张英, 汤坚, 袁身淑, 刘扬岷, 王林祥. 竹叶精油和头香的CGC-MS-DS研究[J]. 天然产物研究与开发, 1998, 10(4):38-44.

    Zhang Y, Tang J, Yuan SS, Liu YM, Wang LX. Analysis on the chemical components in the essential oil and headspace volatile of bamboo leaves[J]. Natural Product Research and Development, 1998, 10(4):38-44.
    [16]
    Toub O, Michel S, Laurent D, Schouwey MB, Sébastien A, et al. Genome size and sequence composition of moso bamboo:A comparative study[J]. Sci China Ser C, 2007, 50(5):700-705.
    [17]
    郭起荣, 周建梅, 孙立方, 廉超, 冯云, 等. 毛竹的花序发育研究[J]. 植物科学学报, 2015, 33(1):19-24.

    Guo QR, Zhou JM, Sun LF, Lian C, Feng Y, et al. Deve-lopment of Phyllostachs edulis inflorescences[J]. Plant Science Journal, 2015, 33(1):19-24.
    [18]
    Toub O, Michel S, Laurent D, Schouwey MB, Sébastien A, et al. Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in moso bamboo (Phyllostachys edulis)[J]. PLoS One, 2015, 10(5):e0126657.
    [19]
    Sun HY, Li LC, Lou YF, Zhao HS, Gao ZM. Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis)[J]. Mol Biol Rep, 2016, 43(5):437-450.
    [20]
    Wu M, Li Y, Chen DM, Liu HL, Zhu DY, Xiang Y. Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis)[J]. Sci Rep, 2016, 6:24520.
    [21]
    Bai Q, Hou D, Li L, Cheng Z, Ge W, et al. Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis)[J]. Genome, 2016, 60(4):325.
    [22]
    Chen DM, Chen Z, Wu M, Wang Y, Wang YJ, et al. Genome-wide identification and expression analysis of the HD-Zip gene family in moso bamboo (Phyllostachys edulis)[J]. J Plant Growth Regul, 2017, 36(2):323-337.
    [23]
    Pan F, Wang Y, Liu H, Wu M, Chu W, et al. Genome-wide identification and expression analysis of SBP-like transcription factor genes in moso bamboo (Phyllostachys edulis)[J]. BMC Genomics, 2017, 18(1):486.
    [24]
    Pan F, Wang Y, Liu H, Wu M, Chu W, et al. Genome-wide analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis)[J]. BMC Plant Biol, 2017, 17(1):29.
    [25]
    Eddy SR. Profile hidden Markov models[J]. Bioinforma-tics, 1998, 14(9):755-763.
    [26]
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, et al. Protein identification and analysis tools on the ExPASy Server[M]//Walker JM, ed. The Proteomics Protocols Handbook:Vol 1. Totowa:Humana Press, 2005:571-607.
    [27]
    Lee GW, Lee S, Chung MS, Jeong YS, Chung BY. Rice terpene synthase 20(OsTPS 20) plays an important role in producing terpene volatiles in response to abiotic stresses[J]. Protoplasma, 2015, 252:997-1007.
    [28]
    叶文武, 王源超, 窦道龙. SeqHunter:序列搜索与分析的生物信息学软件包[J]. 生物信息学, 2010, 8(4):364-367.

    Ye WW, Wang YC, Dou DL. SeqHunter:a bioinformatics toolbox for local Blast and sequence analysis[J]. China Journal of Bioinformatics, 2010, 8(4):364-367.
    [29]
    Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.
    [30]
    Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database[J]. Nucleic Acids Res, 1999, 27(1):297-300.
    [31]
    Menkens AE, Al E. The G-box:a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins[J]. Trends Biochem Sci, 1995, 20(12):506-510.
    [32]
    Argüello-Astorga GR, Herrera-Estrella LR. Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways[J]. Plant Physiol, 1996, 112(3):1151-1166.
    [33]
    Calvert J, Baten A, Butler J, Bronwyn B, Mervyn S. Terpene synthase genes in Melaleuca alternifolia:comparative analysis of lineage-specific subfamily variation within Myrtaceae[J]. Plant Syst Evol, 2017, 304(3):1-11.
    [34]
    Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol, 2008, 59(4):225-251.
    [35]
    Nieuwenhuizen NJ, Green SA, Chen X, Bailleul EJ, Matich AJ, et al. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple[J]. Plant Physiol, 2013, 161(2):787-804.
    [36]
    Lin YL, Lee YR, Huang WK, Chang ST, Chu FH. Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum osmophloeum[J]. Tree Genet Genomes, 2014, 10(1):75-86.
    [37]
    Lu S, Xu R, Chen XY. Cloning and functional characte-rization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression[J]. Plant Physiol, 2002, 130(1):477.
    [38]
    Winzer T, Gazda V, He Z, Kaminski F, Kern M, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine[J]. Science, 2012, 336(6089):1704-1708.
    [39]
    Kumar S, Kempinski C, Zhuang X, Norrris A, Mafu S, Zi J. Molecular diversity of terpene synthases in the liverwort Marchantia polymorpha[J]. Plant Cell, 2016, 28(10):2632.
    [40]
    Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice[J]. Plant Mol Biol, 2010, 55(3):491-503.
    [41]
    Chen X, Wang Y, Sun J, Wang J, Xun H, Tang F. Cloning, expression and functional characterization of two sesquiterpene synthase genes from moso bamboo (Phyllostachys edulis)[J]. Protein Expres Purif, 2016, 120:1-6.
  • Related Articles

    [1]Zhang Dong, Song Shuaishuai, Shi Hongwen, Wei Xinzeng, Jiang Mingxi. Impacts of environmental filtering and dispersal limitation on rare and endangered plant communities of the eastern margin of the Qinghai-Tibet Plateau, China[J]. Plant Science Journal, 2025, 43(2): 201-209. DOI: 10.11913/PSJ.2095-0837.24091
    [2]Wang Meng-Hao, Ran Hang, Liu Yan-Yan, Sun Hua-Yue, Cao Ya-Nan, Wang Hong-Wei, Li Jia-Mei. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal, 2023, 41(2): 149-158. DOI: 10.11913/PSJ.2095-0837.22161
    [3]Cao Guan-Long, Zou Dian-Yang, Zhou Run, Li Lang, Li Jie. A study on the phylogeny and species diversity of the genus Cryptocarya in China[J]. Plant Science Journal, 2021, 39(4): 349-357. DOI: 10.11913/PSJ.2095-0837.2021.40349
    [4]Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
    [5]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [6]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [7]HOU Rong, ZHANG Hua, YI Ling-Jun, LIU Jian-Gang, LÜ Rui, WANG Ying. Study on Epiphytic Bryophytes Species Diversity of Forest Ecosystems in the Ancient Rock Stream Periglacial Landform of the Liaoning Eastern Mountains[J]. Plant Science Journal, 2016, 34(6): 857-872. DOI: 10.11913/PSJ.2095-0837.2016.60857
    [8]ZHAO Zhi-Juan, LIU Guo-Xiang, HU Zheng-Yu. A New Combination Species of Freshwater Cladophorales and Its Phylogenetic Analysis[J]. Plant Science Journal, 2015, 33(3): 281-290. DOI: 10.11913/PSJ.2095-0837.2015.30281
    [9]WANG Chuan-Yi, GUO Bao-Lin. The Characteristics of the Frequently Used Nuclear Robosome Gene Spacers and Their Utilizations in Phylogenetic Study of Plants[J]. Plant Science Journal, 2008, 26(4): 417-423.
    [10]CHEN Shao-Feng, DONG Sui-Sui, WU Wei, SHI Su-Hua, ZHOU Pu-Hua. Phylogenetics of Triarrhena and Related Genera Based on ITS Sequence Data[J]. Plant Science Journal, 2007, 25(3): 239-244.
  • Cited by

    Periodical cited type(11)

    1. 李林霞,何兰君,席磊,冯子航,欧光龙. 中国南方松林地理替代分布规律及其气候主导因子研究. 西南林业大学学报(自然科学). 2024(01): 97-105 .
    2. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    3. 谢婧妍,贺晓慧,朱丽,郝瑞敏. 气候变化背景下云南沙棘在中国的潜在地理分布. 防护林科技. 2023(01): 24-29 .
    4. 赵鹏霞,杨旭,杨志玲,田朝霞,羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报. 2023(02): 285-297 .
    5. 周安晟,成彦丽,陈鸿,徐晨,张远兵. 基于MaxEnt模型预测含笑在中国的潜在适生区. 安徽科技学院学报. 2023(06): 19-27 .
    6. 唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼. 气候变化下中国主要生物燃油树种分布与变迁. 生态学报. 2023(24): 10156-10170 .
    7. 缪菁,王勇,王璐,许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测. 南京林业大学学报(自然科学版). 2021(03): 193-198 .
    8. 覃元艺,陈曦. 石栎属物种果实类型及其系统演化研究进展. 云南民族大学学报(自然科学版). 2021(04): 311-320 .
    9. 陈禹衡,陆双飞,毛岭峰. 黄檀属珍稀树种未来适宜区变化预测. 浙江农林大学学报. 2021(04): 837-845 .
    10. 张晓龙,邓童,罗乐,李进宇. 单叶蔷薇潜在适宜区预测及其渐危机制研究. 西北植物学报. 2021(09): 1570-1582 .
    11. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return