Advance Search
Yuan Guo-Di, Liu Wen-Yao, Shi Xian-Meng, Fan Xiao-Yang. Effects of water content change on photosynthetic and fluorescence parameters of four bole epiphytic bryophytes in montane moist evergreen broad-leaved forest in the Ailao Mountains[J]. Plant Science Journal, 2018, 36(4): 603-611. DOI: 10.11913/PSJ.2095-0837.2018.40603
Citation: Yuan Guo-Di, Liu Wen-Yao, Shi Xian-Meng, Fan Xiao-Yang. Effects of water content change on photosynthetic and fluorescence parameters of four bole epiphytic bryophytes in montane moist evergreen broad-leaved forest in the Ailao Mountains[J]. Plant Science Journal, 2018, 36(4): 603-611. DOI: 10.11913/PSJ.2095-0837.2018.40603

Effects of water content change on photosynthetic and fluorescence parameters of four bole epiphytic bryophytes in montane moist evergreen broad-leaved forest in the Ailao Mountains

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31770496), Biodiversity Conservation Strategy Program of Chinese Academy of Sciences (ZSSD-016), and "CAS 135 Program" (2017XTBG-T01).

More Information
  • Received Date: January 24, 2018
  • Available Online: October 31, 2022
  • Published Date: August 27, 2018
  • The water absorption capacity, water release, desiccation tolerance,stable carbon isotope (δ13C) values, and effects of water content change on photosynthetic and fluorescence parameters of four bole epiphytic bryophytes, Plagiochila assamica Steph., Homaliodendron montagneanum (Müll. Hal.) M. Fleisch., H. scalpellifolium (Mitt.) M. Fleisch., and Thuidium cymbifolium (Dozy et Molk.) Dozy et Molk., were investigated from the montane moist evergreen broad-leaved forest of the Ailao Mountains, Yunnan, China. Results showed that:(1) all species had high water absorption rates, low water-holding capacities, and strong desiccation tolerances, and all exhibited quick resilience after dehydration; (2) the δ13C values and water use efficiency of the four bryophytes were lower than those of vascular plants. Except for T. cymbifolium, the δ13C values and water use efficiency of the other three bryophytes in the rainy season were higher than those in the dry season; and (3) the net photosynthetic rates (Pn) of the four epiphytic bryophytes declined with decreasing water content. The maximum photochemical efficiency parameter (Fv/Fm) declined sharply under water content conditions of less than 60%~80%, indicating that the photosynthetic and fluorescence properties of the four bryophytes were very sensitive to moisture change.
  • [1]
    Barkman JJ. Phytosociology and Ecology of Cryptogamic Epiphytes[M]. Assen, Netherlands:Van Gorcum & Comp. NV, 1958.
    [2]
    Benzing DH. Vascular Epiphytes:General Biology and Related Biota[M]. Cambridge:Cambridge University Press, 1990.
    [3]
    Song L, Zhang YJ, Chen X, Li S, Lu HZ, Wu CS, Tan ZH, Liu WY, Shi XM. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest[J]. J Plant Res, 2015, 128(4):573-584.
    [4]
    Zotz G, Hietz P. The physiological ecology of vascular epiphytes:current knowledge, open questions[J]. J Exp Bot, 2001, 52(364):2067-2078.
    [5]
    Kallio P, Karenlampi L. Photosynthesis in Mosses and Lichens[M]//Cooper JP ed. Photosynthesis and Productivity in Different Environments. Cambridge:Cambridge University Press, 1975:393-423.
    [6]
    Song L, Liu WY, Ma WZ, Qi JH. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China[J]. Oecologia, 2012, 170(3):847-856.
    [7]
    Song L, Liu WY, Nadkarni NM. Response of non-vascular epiphytes to simulated climate change in a montane moist evergreen broad-leaved forest in southwest China[J]. Biol Conserv, 2012,152:127-135.
    [8]
    Song L, Ma WZ, Yao YL, Liu WY, Li S, Chen K, Lu HZ, Cao M, Sun ZH, Tan ZH, Nakamura A. Bole bryophyte diversity and distribution patterns along three altitudinal gradients in Yunnan, China[J]. J Veg Sci, 2015,26(3):576-587.
    [9]
    巩合德,杨国平,鲁志云,刘玉洪,曹敏. 哀牢山常绿阔叶林乔木树种的幼苗组成及时空分布特征[J]. 生物多样性, 2011,19(2):151-157.

    Gong HD, Yang GP, Lu ZY, Liu YH, Cao M. Composition and spatio-temporal distribution of tree seedlings in an evergreen broad-leaved forest in the Ailao Mountains, Yunnan[J]. Biodiversity Science, 2011,19(2):151-157.
    [10]
    Ma WZ, Liu WY, Li XJ. Species composition and life forms of epiphytic bryophytes in old-growth and secondary forests in Mt. Ailao, SW China[J]. Cryptogamie Bryol, 2009,30(4):477-500.
    [11]
    徐海清,刘文耀. 云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布[J]. 生物多样性, 2005,13(2):137-147.

    Xu HQ, Liu WY. Species diversity and distribution of epiphytes in the montane moist evergreen broad-leaved forest in Ailao Mountain, Yunnan[J]. Biodiversity Science, 2005,13(2):137-147.
    [12]
    Limm EB, Simonin KA, Bothman AG, Dawson TE. Foliar water uptake:a common water acquisition strategy for plants of the redwood forest[J]. Oecologia, 2009,161(3):449-459.
    [13]
    郑新军,李嵩,李彦. 准噶尔盆地荒漠植物的叶片水分吸收策略[J]. 植物生态学报, 2011,35(9):893-905.

    Zheng XJ, Li S, Li Y. Leaf water uptake strategy of desert plants in the Junggar Basin, China[J]. Chinese Journal of Plant Ecology, 2011,35(9):893-905.
    [14]
    Kessler M, Siorak Y. Desiccation and rehydration experiments on leaves of 43 pteridophyte species[J]. Am Fern J, 2007,97(4):175-185.
    [15]
    Rosso AL, Muir PS, Rambo TR. Using transplants to measure accumulation rates of epiphytic bryophytes in forests of western Oregon[J]. Bryologist, 2001,104(3):430-439.
    [16]
    Hietz P. Diversity and conservation of epiphytes in a changing environment[J]. Pure Appl Chem, 1999,70(11):2114-2125.
    [17]
    Proctor MCF. How long must a desiccation-tolerant moss tolerate desiccation? Some results of 2 years' data logging on Grimmia pulvinata[J]. Physiol Plantarum, 2004,122(1):21-27.
    [18]
    Dilks TJK, Proctor MCF. Photosynthesis, respiration and water content in bryophytes[J]. New Phytol, 1979,82(1):97-114.
    [19]
    吴鹏程. 苔藓植物生物学[M]. 北京:科学出版社,1998.
    [20]
    Farrant JM, Moore JP. Programming desiccation-tolerance:from plants to seeds to resurrection plants[J]. Curr Opin Plant Biol, 2011,14(3):340-345.
    [21]
    杜晓濛,田向荣,李菁,石进校. 脱水和复水过程中金发藓(Polytrichum commune)与湿地匐灯藓(Plagiomnium acutum)叶绿素荧光特性变化的比较研究[J]. 生命科学研究, 2012,16(6):521-525.

    Du XM, Tian XR, Li J, Shi JX. Comparison on alternation of chlorophyll fluoroscence between Polytrichum commune and Plagiomnium acutum during dehydration and rehydration[J]. Life Science Research, 2012,16(6):521-525.
    [22]
    Farquhar G, Richards R. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Funct Plant Biol, 1984,11(6):539-552.
    [23]
    吴骏恩,刘文杰,朱春景. 稳定同位素在植物水分来源及利用效率研究中的应用[J]. 西南林业大学学报, 2014,34(5):103-110.

    Wu JE, Liu WJ, Zhu CJ. Application of stable isotope techniques in the study of plant water sources and use efficiency[J]. Journal of Southwest Forestry University, 2014,34(5):103-110.
    [24]
    Rice SK. Variation in carbon isotope discrimination within and among Sphagnum species in a temperate wetland[J]. Oecologia, 2000,123(1):1-8.
    [25]
    Wasley J, Robinson SA, Lovelock CE, Popp M. Some like it wet-biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes[J]. Funct Plant Biol, 2006,33(5):443-455.
    [26]
    吴玉环,高谦,程国栋,于兴华,曹同. 苔藓植物对全球变化的响应及其生物指示意义[J]. 应用生态学报, 2002,13(7):895-900.

    Wu YH, Gao C, Chen GD, Yu XH, Cao T. Response of bryophytes to global change and its bioindicatortation[J]. Chinese Journal of Applied Ecology, 2012,13(7):895-900.
    [27]
    张元明,曹同,潘伯荣. 干旱与半干旱地区苔藓植物生态学研究综述[J]. 生态学报, 2002,22(7):1129-1134.

    Zhang YM, Cao T, Pan BR. A review on the studies of bryophyte ecology in arid and semi-arid areas[J]. Acta Ecologica Sinica, 2002,22(7):1129-1134.
    [28]
    Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD. Desiccation-tolerance in bryophytes:a review[J]. Bryologist, 2007,110(4):595-621.
    [29]
    Silvola J. Moisture dependence of CO2 exchange and its recovery after drying in certain boreal forest and peat mosses[J]. Lindbergia, 1991,17(1):5-10.
    [30]
    Zotz G, Büde B, Meyer A, Zellner H, Lange OL. Water relations and CO2 exchange of tropical bryophytes in a lower montane rain forest in Panama[J]. Plant Biology, 1997,110(1):9-17.
    [31]
    Tuba Z, Csintalan Z, Proctor MCF. Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance:a baseline study at present-day CO2 concentration[J]. New Phytol, 1996,133(2):353-361.
    [32]
    Csintalan Z, Proctor MCF, Tuba Z. Chlorophyll fluorescence during drying and rehydration in the mosses Rhy-tidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook.& Tayl.and Grimmia pulvinata (Hedw.) Sm[J]. Ann Bot, 1999,84(2):235-244.
    [33]
    张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学报, 1999,16(4):444-448.

    Zhang SR. A discussion on chlorophyll fluorescence kine-tics parameters and their significance. Chinese Bulletin of Botany, 1999,16(4):444-448.
    [34]
    衣艳君,刘家尧. 毛尖紫萼藓(Grimmia pilifera P. Beauv) PSⅡ光化学效率对脱水和复水的响应[J]. 生态学报, 2007,27(12):5238-5244.

    Yi YJ, Liu JY. Photochemical analysis of PSⅡ in response to dehydration and rehydration in moss Grimmia pilifer P. Beauv[J]. Acta Ecologica Sinica, 2007,27(12):5238-5244.
    [35]
    Hájek T, Beckett RP. Effect of water content components on desiccation and recovery in Sphagnum mosses[J]. Ann Bot, 2008,101(1):165-173.
  • Related Articles

    [1]Zhang Dong, Song Shuaishuai, Shi Hongwen, Wei Xinzeng, Jiang Mingxi. Impacts of environmental filtering and dispersal limitation on rare and endangered plant communities of the eastern margin of the Qinghai-Tibet Plateau, China[J]. Plant Science Journal, 2025, 43(2): 201-209. DOI: 10.11913/PSJ.2095-0837.24091
    [2]Wang Meng-Hao, Ran Hang, Liu Yan-Yan, Sun Hua-Yue, Cao Ya-Nan, Wang Hong-Wei, Li Jia-Mei. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal, 2023, 41(2): 149-158. DOI: 10.11913/PSJ.2095-0837.22161
    [3]Cao Guan-Long, Zou Dian-Yang, Zhou Run, Li Lang, Li Jie. A study on the phylogeny and species diversity of the genus Cryptocarya in China[J]. Plant Science Journal, 2021, 39(4): 349-357. DOI: 10.11913/PSJ.2095-0837.2021.40349
    [4]Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
    [5]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [6]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [7]HOU Rong, ZHANG Hua, YI Ling-Jun, LIU Jian-Gang, LÜ Rui, WANG Ying. Study on Epiphytic Bryophytes Species Diversity of Forest Ecosystems in the Ancient Rock Stream Periglacial Landform of the Liaoning Eastern Mountains[J]. Plant Science Journal, 2016, 34(6): 857-872. DOI: 10.11913/PSJ.2095-0837.2016.60857
    [8]ZHAO Zhi-Juan, LIU Guo-Xiang, HU Zheng-Yu. A New Combination Species of Freshwater Cladophorales and Its Phylogenetic Analysis[J]. Plant Science Journal, 2015, 33(3): 281-290. DOI: 10.11913/PSJ.2095-0837.2015.30281
    [9]WANG Chuan-Yi, GUO Bao-Lin. The Characteristics of the Frequently Used Nuclear Robosome Gene Spacers and Their Utilizations in Phylogenetic Study of Plants[J]. Plant Science Journal, 2008, 26(4): 417-423.
    [10]CHEN Shao-Feng, DONG Sui-Sui, WU Wei, SHI Su-Hua, ZHOU Pu-Hua. Phylogenetics of Triarrhena and Related Genera Based on ITS Sequence Data[J]. Plant Science Journal, 2007, 25(3): 239-244.
  • Cited by

    Periodical cited type(11)

    1. 李林霞,何兰君,席磊,冯子航,欧光龙. 中国南方松林地理替代分布规律及其气候主导因子研究. 西南林业大学学报(自然科学). 2024(01): 97-105 .
    2. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    3. 谢婧妍,贺晓慧,朱丽,郝瑞敏. 气候变化背景下云南沙棘在中国的潜在地理分布. 防护林科技. 2023(01): 24-29 .
    4. 赵鹏霞,杨旭,杨志玲,田朝霞,羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报. 2023(02): 285-297 .
    5. 周安晟,成彦丽,陈鸿,徐晨,张远兵. 基于MaxEnt模型预测含笑在中国的潜在适生区. 安徽科技学院学报. 2023(06): 19-27 .
    6. 唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼. 气候变化下中国主要生物燃油树种分布与变迁. 生态学报. 2023(24): 10156-10170 .
    7. 缪菁,王勇,王璐,许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测. 南京林业大学学报(自然科学版). 2021(03): 193-198 .
    8. 覃元艺,陈曦. 石栎属物种果实类型及其系统演化研究进展. 云南民族大学学报(自然科学版). 2021(04): 311-320 .
    9. 陈禹衡,陆双飞,毛岭峰. 黄檀属珍稀树种未来适宜区变化预测. 浙江农林大学学报. 2021(04): 837-845 .
    10. 张晓龙,邓童,罗乐,李进宇. 单叶蔷薇潜在适宜区预测及其渐危机制研究. 西北植物学报. 2021(09): 1570-1582 .
    11. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .

    Other cited types(4)

Catalog

    Article views (637) PDF downloads (713) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return