Advance Search
Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
Citation: Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612

Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress

Funds: 

This work was supported by grants from the Scientific Research Foundation of Inner Mongolia University for Nationalities (NMDYB15097), Doctoral Research Foundation of Inner Mongolia University for the Nationalities (BS417), and National Natural Science Foundation of China (31760372).

More Information
  • Received Date: January 06, 2018
  • Available Online: October 31, 2022
  • Published Date: August 27, 2018
  • A hydroponics experiment was conducted to study the effects of single and compound application of nitric oxide (NO) donor sodium nitroprusside (SNP) and salicylic acid (SA) on plant growth, photosynthetic parameters, membrane lipid peroxidation and the ascorbate-glutathione cycle (AsA-GSH cycle) in tomato cultivar (‘Qinfeng Baoguan’) seedling leaves under 100 mmol/L NaCl stress. Results showed that salt stress had significant effects on the growth, photosynthetic rate, and related indicators of reactive oxygen metabolism. Single or combined application of SNP and SA effectively alleviated the salinity damage of tomato seedlings, and the strongest effect was observed after applying a combination of SNP and SA. After 3-7 days of stress treatment, the PSⅡ maximal photochemistry efficiency (Fv/Fm), net photosynthetic rate (Pn), activities of ascorbate peroxidase (APX), glutathione reductase (GR) and droascorbic acid reductase (DHAR), and contents of reductive-form abscisic acid (AsA) and reduced glutathione (GSH) in leaves increased by 9.5%-15.3%, 25.5%-94.9%, 38.8%-67.5%, 15.2%-30.6%, 7.9%-41%, 4.4%-45.7%, and 13.8%-21.5%, respectively. Furthermore, the contents of H2O2, malondialdehyde (MDA), dehydroascorbic acid (DHA), oxidized glutathione (GSSG) and electrolyte leakage in leaves were reduced by 18.4%-40.4%, 35.2%-52.4%, 4.6%-26.3%, 14.8%-20.7%, and 23.1%-29.3%, respectively, compared with stress treatment. In conclusion, single or combined application of SNP and SA not only played a role in the stable operation of the AsA-GSH cycle, but also reduced membrane lipid peroxidation, promoted photosynthesis, enhanced plant growth and development, and improved seedling resistance by maintaining and coordinating the increase in related antioxidant enzyme activities and inhibiting the decrease in antioxidant content. Thus, a synergistic effect was observed after applying both SNP and SA.
  • [1]
    Hasanuzzaman M, Nahar K, Fujita M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages[M]//Ahmad P, Azooz MM, Prasad MNV, eds. Ecophysiology and Responses of Plants under Salt Stress. New York:Springer, 2013.
    [2]
    Nazar R, Umar S, Khan NA. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress[J]. Plant signal Behav, 2015, 10(3):1-10.
    [3]
    Hossain MA, Ismail MR, Uddin MK, Islam MZ, Ashrafuzzaman M. Efficacy of ascorbate-glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress[J]. Aust J Crop Sci, 2013, 7(12):1801-1808.
    [4]
    Delian E, Bǎdulescu L, Dobrescu A, Chira L, Lagunovschi-Luchian V. A brief overview of seed priming benefits in tomato[J]. Rom Biotech Lett, 2017, 22(3):12505-12513.
    [5]
    Yusuf M, Hayat S, Alyemeni MN, Fariduddin Q, Ahmad A. Salicylic acid:Physiological roles in plants[M]//Hayat S, Ahmad A, Alyemeni MN, eds. Salicylic Acid:Plant Growth and Development. Netherlands:Springer Dordrecht Heidelberg, 2013.
    [6]
    Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology:a redox cue in deconvolution[J]. New Phytol, 2014, 202(4):1142-1156.
    [7]
    Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, et al. Nitric oxide and salicylic acid signaling in plant defense[J]. P Natl Acad Sci USA, 2000, 97(16):8849-8855.
    [8]
    张婧一, 陈红艳, 张洪培, 朱楠, 董娟娥. 水杨酸诱发的NO介导了丹参悬浮培养细胞中丹酚酸B的生物合成[J]. 植物科学学报, 2015, 33(1):81-89.

    Zhang JY, Chen HY, Zhang HP, Zhu N, Dong JE. Nitric oxide triggered by salicylic acid mediates the biosynthesis of salvianolic acid B in Salvia miltiorrhiza suspension cell culture[J]. Plant Science Journal, 2015, 33(1):81-89.
    [9]
    Khurana A, Kumar R, Babbar SB. Nitric oxide is involved in salicylic acid-induced flowering of Lemna aequinoctialis Welw[J]. Acta Physiol Plant, 2014, 36(10):2827-2833.
    [10]
    Asgher M, Per TS, Masood A, Fatma M, Freschi L, et al. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress[J]. Environ Sci Pollut R, 2017, 24(3):2273-2285.
    [11]
    Xu LL, Fan ZY, Dong YJ, Kong J, Bai XY. Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress[J]. Biol Plantarum, 2015, 59(1):171-182.
    [12]
    Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, et al. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.)[J]. Plant Physiol Bioch, 2017, 115:163-173.
    [13]
    Esim N, Atici Ö. Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum)[J]. Front Life Sci, 2015, 8(2):124-130.
    [14]
    Song YL, Dong YJ, Kong J, Tian XY, Bai XY, Xu LL. Effects of root addition and foliar application of nitric oxide and salicylic acid in alleviating iron deficiency induced chlorosis of peanut seedlings[J]. J Plant Nutr, 2017, 40(1):63-81.
    [15]
    Yan F, Liu Y, Sheng H, Wang Y, Kang H, Zeng J. Salicylic acid and nitric oxide increase photosynthesis and antioxidant defense in wheat under UV-B stress[J]. Biol Plantarum, 2016, 60(4):686-694.
    [16]
    Simaei M, Khavari-nejad RA, Saadatmand S, Bernard F, Fahimi H. Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity[J]. Afr J Agr Res, 2011, 6(16):3775-3782.
    [17]
    Liu S, Dong YJ, Xu LL, Kong J. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings[J]. Plant Growth Regul, 2014, 73(1):67-78.
    [18]
    林植芳, 李双顺, 林桂珠, 郭俊彦. 衰老叶片和叶绿体中H2O2的积累与膜脂过氧化的关系[J]. 植物生理学报, 1988, 14(1):16-22.

    Lin ZF, Li SS, Lin GZ,Guo JY. The accumulation of hydrogen peroxide in senescencing leaves and chloroplasts in relation to lipid peroxidation[J]. Plant Physiology Journal, 1988, 14(1):16-22.
    [19]
    Heath RL, Packer L. Photoperoxidation in isolated chloroplasts:Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation[J]. Arch Biochem Biophys, 1968, 125(1):189-198.
    [20]
    张宪政. 作物生理研究方法[M]. 北京:农业出版社, 1992.
    [21]
    Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-l,10-phenanthroline[J]. Agric Biol Chem, 1981, 45(5):1289-1290.
    [22]
    Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Anal Biochem, 1980, 106:207-212.
    [23]
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880.
    [24]
    Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1):21-25.
    [25]
    Hossain MA, Nakano Y, Asada K. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide[J]. Plant Cell Physiol, 1984, 25(3):385-395.
    [26]
    Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K. Salt stress impact on the molecular structure and function of the photosynthetic apparatus-The protective role of polyamines[J]. BBA-Bioenergetics, 2007, 1767(4):272-280.
    [27]
    樊怀福, 郭世荣, 焦彦生, 张润花, 李娟. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长, 活性氧代谢和光合特性的影响[J]. 生态学报, 2007, 27(2):546-553.

    Fan HF, Guo SR, Jiao YS, Zhang RH, Li J. The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedling under NaCl stress[J]. Acta Ecologica Sinica, 2007, 27(2):546-553.
    [28]
    Kim YH, Khan AL, Waqas M, Lee IJ. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress:a review[J]. Front Plant Sci, 2017, 8(4):1-7.
    [29]
    Nahar K, Hasanuzzaman M, Suzuki T, Fujita M. Polyamines-induced aluminum tolerance in mung bean:A study on antioxidant defense and methylglyoxal detoxification systems[J]. Ecotoxicology, 2017, 26(1):58-73.
    [30]
    Kadioglu A, Saruhan N, Saǧlam A, Terzi R, Acet T. Exo-genous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system[J]. Plant Growth Regul, 2011, 64(1):27-37.
    [31]
    颜志明, 孙锦, 郭世荣, 魏跃, 胡德龙, 王全智. 外源脯氨酸对盐胁迫下甜瓜幼苗根系抗坏血酸-谷胱甘肽循环的影响[J]. 植物科学学报, 2014, 32(5):502-508.

    Yan ZM, Sun J, Guo SR, Wei Y, Hu DL, Wang QZ. Effects of exogenous proline on the ascorbate-glutathione cycle in roots of Cucumis melo seedlings under salt stress[J]. Plant Science Journal, 2014, 32(5):502-508.
    [32]
    Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, et al. Metal/metalloid stress tolerance in plants:role of ascorbate, its redox couple, and associated enzymes[J]. Protoplasma, 2014, 251(6):1265-1283.
    [33]
    Nahar K, Hasanuzzaman M, Alam MM, Fujita M. Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system[J]. Environ Exp Bot, 2015, 112:44-54.
    [34]
    刘会芳, 何晓玲, 马展, 徐巍, 刘苗苗, 刘慧英. 外源GSH对NaCl胁迫下番茄幼苗生长及AsA-GSH循环的影响[J]. 石河子大学学报:自然科学版, 2014, 32(3):265-271.

    Liu HF, He XL, Ma Z, Xu W, Liu MM, Liu HY. Effects of exogenous GSH on the growth and AsA-GSH cycle in tomato seedlings under NaCl stress[J]. Journal of Shihezi University:Natural Science Edition, 2014, 32(3):265-271.
    [35]
    Wu XX, Zhu WM, Zhang H, Ding HD, Zhang HJ. Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lyco-persicom esculentum Mill.)[J]. Acta Physiol Plant, 2011, 33(4):1199-1209.
    [36]
    He Y, Zhu ZJ. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum[J]. Biol Plantarum, 2008, 52(4):792-795.
    [37]
    Manai J, Kalai T, Gouia H, Corpas FJ. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants[J]. J Soil Sci Plant Nutr, 2014, 14(2):433-446.
    [38]
    Tari I, Csiszár J, Horváth E, Poór P, Takács Z, Szepesi Á. The alleviation of the adverse effects of salt stress in the tomato plant by salicylic acid shows a time-and organ-specific antioxidant response[J]. Acta Biol Cracov Bot, 2015, 57(1):21-30.
    [39]
    樊怀福, 郭世荣, 段九菊, 杜长霞,孙锦. 外源NO对NaCl胁迫下黄瓜(Cucumis sativus L.)幼苗生长和谷胱甘肽抗氧化酶系统的影响[J]. 生态学报, 2008, 28(6):2511-2517.

    Fan HF, Guo SR, Duan JJ, Du CX, Sun J. Effects of nitric oxide on the growth and glutathione dependent antioxidative system in cucumber (Cucumis sativus L.) seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2008, 28(6):2511-2517.
    [40]
    刘建新, 王鑫, 李博萍. 外源一氧化氮供体SNP对NaCl胁迫下黑麦草幼苗叶片抗坏血酸-谷胱甘肽循环的影响[J]. 草业学报, 2010, 19(2):82-88.

    Liu JX, Wang X, Li BP. Effects of exogenous nitric oxide donor SNP on AsA-GSH cycle in ryegrass seedlings lea-ves under salt stress[J]. Acta Prataculturae Sinica, 2010, 19(2):82-88.
    [41]
    Miyake C, Schreiber U, Hormann H, Sano S, Kozi A. The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes[J]. Plant Cell physiol, 1998, 39(8):821-829.
  • Related Articles

    [1]Zhang Dong, Song Shuaishuai, Shi Hongwen, Wei Xinzeng, Jiang Mingxi. Impacts of environmental filtering and dispersal limitation on rare and endangered plant communities of the eastern margin of the Qinghai-Tibet Plateau, China[J]. Plant Science Journal, 2025, 43(2): 201-209. DOI: 10.11913/PSJ.2095-0837.24091
    [2]Wang Meng-Hao, Ran Hang, Liu Yan-Yan, Sun Hua-Yue, Cao Ya-Nan, Wang Hong-Wei, Li Jia-Mei. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal, 2023, 41(2): 149-158. DOI: 10.11913/PSJ.2095-0837.22161
    [3]Cao Guan-Long, Zou Dian-Yang, Zhou Run, Li Lang, Li Jie. A study on the phylogeny and species diversity of the genus Cryptocarya in China[J]. Plant Science Journal, 2021, 39(4): 349-357. DOI: 10.11913/PSJ.2095-0837.2021.40349
    [4]Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
    [5]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [6]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [7]HOU Rong, ZHANG Hua, YI Ling-Jun, LIU Jian-Gang, LÜ Rui, WANG Ying. Study on Epiphytic Bryophytes Species Diversity of Forest Ecosystems in the Ancient Rock Stream Periglacial Landform of the Liaoning Eastern Mountains[J]. Plant Science Journal, 2016, 34(6): 857-872. DOI: 10.11913/PSJ.2095-0837.2016.60857
    [8]ZHAO Zhi-Juan, LIU Guo-Xiang, HU Zheng-Yu. A New Combination Species of Freshwater Cladophorales and Its Phylogenetic Analysis[J]. Plant Science Journal, 2015, 33(3): 281-290. DOI: 10.11913/PSJ.2095-0837.2015.30281
    [9]WANG Chuan-Yi, GUO Bao-Lin. The Characteristics of the Frequently Used Nuclear Robosome Gene Spacers and Their Utilizations in Phylogenetic Study of Plants[J]. Plant Science Journal, 2008, 26(4): 417-423.
    [10]CHEN Shao-Feng, DONG Sui-Sui, WU Wei, SHI Su-Hua, ZHOU Pu-Hua. Phylogenetics of Triarrhena and Related Genera Based on ITS Sequence Data[J]. Plant Science Journal, 2007, 25(3): 239-244.
  • Cited by

    Periodical cited type(11)

    1. 李林霞,何兰君,席磊,冯子航,欧光龙. 中国南方松林地理替代分布规律及其气候主导因子研究. 西南林业大学学报(自然科学). 2024(01): 97-105 .
    2. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    3. 谢婧妍,贺晓慧,朱丽,郝瑞敏. 气候变化背景下云南沙棘在中国的潜在地理分布. 防护林科技. 2023(01): 24-29 .
    4. 赵鹏霞,杨旭,杨志玲,田朝霞,羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报. 2023(02): 285-297 .
    5. 周安晟,成彦丽,陈鸿,徐晨,张远兵. 基于MaxEnt模型预测含笑在中国的潜在适生区. 安徽科技学院学报. 2023(06): 19-27 .
    6. 唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼. 气候变化下中国主要生物燃油树种分布与变迁. 生态学报. 2023(24): 10156-10170 .
    7. 缪菁,王勇,王璐,许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测. 南京林业大学学报(自然科学版). 2021(03): 193-198 .
    8. 覃元艺,陈曦. 石栎属物种果实类型及其系统演化研究进展. 云南民族大学学报(自然科学版). 2021(04): 311-320 .
    9. 陈禹衡,陆双飞,毛岭峰. 黄檀属珍稀树种未来适宜区变化预测. 浙江农林大学学报. 2021(04): 837-845 .
    10. 张晓龙,邓童,罗乐,李进宇. 单叶蔷薇潜在适宜区预测及其渐危机制研究. 西北植物学报. 2021(09): 1570-1582 .
    11. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .

    Other cited types(4)

Catalog

    Article views (782) PDF downloads (705) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return