Advance Search
Liu Hong-Ling, Zhang Xin-Wan, Huang Wei, Zhang Yan-Ge, Zhao Hua. Advances in research on plant amino acid transporters[J]. Plant Science Journal, 2018, 36(4): 623-631. DOI: 10.11913/PSJ.2095-0837.2018.40623
Citation: Liu Hong-Ling, Zhang Xin-Wan, Huang Wei, Zhang Yan-Ge, Zhao Hua. Advances in research on plant amino acid transporters[J]. Plant Science Journal, 2018, 36(4): 623-631. DOI: 10.11913/PSJ.2095-0837.2018.40623

Advances in research on plant amino acid transporters

Funds: 

This work was supported by a grant from the Fundamental Research Funds for the Central Universities (2662018JC046).

More Information
  • Received Date: February 07, 2018
  • Available Online: October 31, 2022
  • Published Date: August 27, 2018
  • Amino acids are the principal form of organic nitrogen transportation within plants. Amino acid transporters are essential for the import and export of amino acids from plant cells as well as between organelles across cellular or subcellular membranes. Various molecular mechanisms for the absorption and transportation of amino acids have been demonstrated in plants, which contribute significantly to nitrogen efficiency. This review summarizes research progress on the molecular mechanisms of amino acid transporters based on their expression pattern, function, and regulation, which are associated with important traits, such as nitrogen utilization efficiency, disease resistance, quality, and production.
  • [1]
    Jonasson S, Shaver GR. Within-stand nutrient cycling in arctic and boreal wetlands[J]. Ecology, 1999, 80(7):2139-2150.
    [2]
    Näsholm T, Persson J. Plant acquisition of organic nitrogen in boreal forests[J]. Physiol Plantarum, 2001, 111(4):419-426.
    [3]
    Cao XC, Chen XY, Li XY, Yuan L, Wu LH, Zhu YH. Rice uptake of soil adsorbed amino acids under sterilized environment[J]. Soil BiolBiochem, 2013, 62(5):13-21.
    [4]
    Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants[J]. FEBS Letters, 2007, 581(12):2281-2289.
    [5]
    Fischer W, Loo DDF, Koch W, Ludewig U, Boorer KJ, et al. Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids[J]. Plant J, 2002, 29(6):717-731.
    [6]
    Lee YH, Foster J, Chen J, Voll LM, Weber APM, Tegeder M. AAP1 transports uncharged amino acids into roots of Arabidopsis[J]. Plant J, 2007, 50(2):305-319.
    [7]
    Perchlik M, Foster J, Tegeder M. Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake[J]. J Exp Bot, 2014, 65(18):5193-5204.
    [8]
    Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis[J]. Plant Cell, 2010, 22(11):3603-3620.
    [9]
    Koch W, Kwart M, Laubner M, Heineke D, Stransky H, et al. Reduced amino acid content in transgenic potato tubers due to antisense inhibition of the leaf H+/amino acid symporter StAAP1[J]. Plant J, 2003, 33(2):211-220.
    [10]
    Taylor MR, Reinders A, Ward JM. Transport function of rice amino acid permeases (AAPs)[J]. Plant Cell Phy-siol, 2015, 56(7):1355-1363.
    [11]
    Zhao HM, Ma HL, Yu L, Wang X, Zhao J. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.)[J]. PLoS One, 2012, 7(11):e49210.
    [12]
    Peng B, Kong HL, Li YB, Wang LQ, Zhong M, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nat Commun, 2014, 5(1):4847.
    [13]
    Couturier J, de Faÿ E, Fitz M, Wipf D, Blaudez D, Chalot M. PtAAP11, a high affinity amino acid transporter speci-fically expressed in differentiating xylem cells of poplar[J]. J Exp Bot, 2010, 61(6):1671-1682.
    [14]
    Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, et al. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll[J]. Plant Cell, 2006, 18(8):1931-1946.
    [15]
    Shin K, Lee S, Song W, Lee RA, Lee I. Genetic identification of acc-resistant2 reveals involvement of lysine hisdine transpoter1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana[J]. Plant Cell Physiol, 2015, 56(3):572-582.
    [16]
    Zhang R, Zhu J, Huang JJ, Cao HZ, Luo ZY. Isolation and characterization of LHT-type plant amino acid transporter gene from Panax ginseng Meyer[J]. J Gins Res, 2013, 37(3):361-370.
    [17]
    Meyer A, Eskandari S, Grallath S, Rentsch D. AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana[J]. J Biol Chem, 2006, 281(11):7197-7204.
    [18]
    Chen L, Ortiz-Lopez A, Jung A, Bush DR. ANT1, an aromatic and neutral amino acid transporter in Arabidopsis[J]. Plant Physiol, 20011, 25(4):1813-1820.
    [19]
    Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, et al. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana[J]. Ann Bot, 2010, 105(2):277-289.
    [20]
    Roy S, Robson F, Lilley J, Liu CW, Cheng X, et al. MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis[J]. Plant Physiol, 2017, 174(1):326-338.
    [21]
    Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grote-meyer M, et al. The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns[J]. Plant Physiol, 2005, 137(1):117-126.
    [22]
    Fujiwara T, Mitsuya S, Miyake H, Hattori T,Takabe T. Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley[J]. Planta, 2010, 232(1):133-143.
    [23]
    Guo N, Xue D, Zhang W, Zhao JM, Xue CC, et al. Overexpression of GmProT1 and GmProT2 increases tolerance to drought and salt stresses in transgenic Arabidopsis[J]. J Inter Arg, 2016, 15(8):1727-1743.
    [24]
    Su Y, Frommer WB, Ludewig U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis[J]. Plant Physiol, 2004, 136(2):3104-3113.
    [25]
    Yang HY, Krebs M, Stierhof Y, Ludewig U. Characterization of the putative amino acid transporter genes AtCAT2, 3 & 4:The tonoplast localized AtCAT2 regulates soluble leaf amino acids[J]. J Plant Physiol, 2014, 171(8):594-601.
    [26]
    Frommer WB, Hummel S, Unseld M, Ninnemann O. Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis[J]. Proc Natl Acad Sci USA, 1995, 92:12036-12040.
    [27]
    Yang H, Stierhof Y, Ludewig U. The putative cationic amino acid transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis[J]. Front Plant Sci, 2015, 6:212.
    [28]
    Couturier J, Doidy J, Guinet F, Wipf D, Blaudez D, Chalot M. Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar[J]. Ann Bot, 2010, 105(7):1159-1169.
    [29]
    Yang Y, Yang L, Li Z. Molecular cloning and identification of a putative tomato cationic amino acid transporter-2 gene that is highly expressed in stamens[J]. Plant Cell Tiss Org, 2013, 112(1):55-63.
    [30]
    Regina TMR, Galluccio M, Scalise M, Pochini L, Indiveri C. Bacterial production and reconstitution in proteoliposomes of Solanum lycopersicum CAT2:a transporter of basic amino acids and organic cations[J]. Plant Mol Biol, 2017, 94(6):657-667.
    [31]
    Fujita M, Fujita Y, Iuchi S, Yamada K, Kobayashi Y, et al. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2012, 109(16):6343-6347.
    [32]
    Begam RA. Functional characterization of the L-type amino acid transporters (LATs) in Arabidopsis thaliana[D]. Edmonton:University of Alberta, 2012.
    [33]
    Okumoto S, Pilot G. Amino acid export in plants:Amissing link in nitrogen cycling[J]. Mol Plant, 2011, 4(3):453-463.
    [34]
    Tegeder M. Transporters for amino acids in plant cells:Some functions and many unknowns[J]. Curr Opin Plant Biol, 2012, 15(3):315-321.
    [35]
    Dündar E, Bush DR. BAT1, a bidirectional amino acid transporter in Arabidopsis[J]. Planta, 2009, 229(5):1047-1056.
    [36]
    Hunt EJ, Pritchard J, Bennett MJ, Allen T, Bale J, Newbury HJ. The Arabidopsis thaliana/Myzus persicae model system demonstrates that a single gene can influence the interaction between a plant and a sap-feeding insect[J]. Mol Ecol, 2006, 15(13):4203-13.
    [37]
    Besnard J, Pratelli R, Zhao CS, Sonawala U, Collakova E, et al. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots[J]. J Exp Bot, 2016, 67(22):6385-6397.
    [38]
    Pilot G, Stransky H, Bushey D, Pratelli R, Ludewig U, Wingate VPM. Overexpression of glutamine dumper1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves[J]. Plant Cell, 2004, 16(7):1827-1840.
    [39]
    Fujiki Y, Teshima H, Kashiwao S, Kawano-Kawada M, Ohsumi Y, et al. Functional identification of AtAVT3, a family of vacuolar amino acid transporters, in Arabidopsis[J]. FEBS Letters, 2017, 591(1):5-15.
    [40]
    Sekito T, Nakamura K, Manabe K, Tone J, Sato Y, et al. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1Δ mutant[J]. Biosci Biotechnol Biochem, 2014, 78(7):1199-202.
    [41]
    Catoni E, Desimone M, Hilpert M, Wipf D, Kunze R, et al. Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis[J]. BMC Plant Biol, 2003, 3(1):1-10.
    [42]
    Lee BR, Zhang Q, Bae D, Kim TH. Pod removal responsive change in phytohormones and its impact on protein degradation and amino acid transport in source leaves of Brassica napus[J]. Plant Physiol Biochem, 2016, 106:159-164.
    [43]
    Perchlik M, Tegeder M. Improving plant nitrogen use efficiency through alteration of aminoacid transport processes[J]. Plant Physiol, 2017, 175:235-247.
    [44]
    Santiago JP, Tegeder M. Connecting source with sink:the role of Arabidopsis AAP8 in phloem loading of amino acids[J]. Plant Physiol, 2016, 171(1):508-521.
    [45]
    Rentsch D, Frommer WB. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant[J]. Plant Cell, 1996, 8(8):1437-1446.
    [46]
    Guether M, Volpe V, Balestrini R, Requena N, Wipf D, et al. LjLHT1.2-a mycorrhiza-inducible plant amino acid transporter from Lotus japonicas[J]. Biol Fertil Soils, 2011, 47(8):925-936.
    [47]
    Xie Y, Zhao J, Wang C, Yu AX, Liu N, et al. Glycinergic-Fipronil uptake is mediated by an amino acid carrier system and induces the expression of amino acid transporter genes in Ricinus communis seedlings[J]. J Agric Food Chem, 2016, 64(19):3810-3818.
    [48]
    Ueda A, Shi W, Sanmiya K, Shono M, Takabe T. Functional analysis of salt-inducible proline transporter of barley roots[J]. Plant Cell Physiol, 2001, 42(11):1282-1289.
    [49]
    Popova OV, Dietz KJ, Golldack D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum[J]. Plant Mol Biol, 2003, 52(3):569-578.
    [50]
    Liu G, Ji Y, Bhuiyan NH, Pllot GO, Selvaraj G, et al. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis[J]. Plant Cell, 2010, 22(11):3845-3863.
    [51]
    Yang H, Postel S, Kemmerling B, Ludewig U. Altered growth and improved resistance of Arabidopsis against Pseudomonas syringae by overexpression of the basic amino acid transporter AtCAT1[J]. Plant Cell Environ, 2014, 37(6):1404-1414.
    [52]
    Tegeder M, Hammes UZ. The way out and in:phloem loading and unloading of amino acids[J]. Curr Opin Plant Biol, 2018, 43:16-21.
    [53]
    Zhang L, Garneau MG, Majumdar R, Grant J, Tegeder M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids[J]. Plant J, 2015, 81(1):134-146.
  • Related Articles

    [1]Zhang Dong, Song Shuaishuai, Shi Hongwen, Wei Xinzeng, Jiang Mingxi. Impacts of environmental filtering and dispersal limitation on rare and endangered plant communities of the eastern margin of the Qinghai-Tibet Plateau, China[J]. Plant Science Journal, 2025, 43(2): 201-209. DOI: 10.11913/PSJ.2095-0837.24091
    [2]Wang Meng-Hao, Ran Hang, Liu Yan-Yan, Sun Hua-Yue, Cao Ya-Nan, Wang Hong-Wei, Li Jia-Mei. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal, 2023, 41(2): 149-158. DOI: 10.11913/PSJ.2095-0837.22161
    [3]Cao Guan-Long, Zou Dian-Yang, Zhou Run, Li Lang, Li Jie. A study on the phylogeny and species diversity of the genus Cryptocarya in China[J]. Plant Science Journal, 2021, 39(4): 349-357. DOI: 10.11913/PSJ.2095-0837.2021.40349
    [4]Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
    [5]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [6]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [7]HOU Rong, ZHANG Hua, YI Ling-Jun, LIU Jian-Gang, LÜ Rui, WANG Ying. Study on Epiphytic Bryophytes Species Diversity of Forest Ecosystems in the Ancient Rock Stream Periglacial Landform of the Liaoning Eastern Mountains[J]. Plant Science Journal, 2016, 34(6): 857-872. DOI: 10.11913/PSJ.2095-0837.2016.60857
    [8]ZHAO Zhi-Juan, LIU Guo-Xiang, HU Zheng-Yu. A New Combination Species of Freshwater Cladophorales and Its Phylogenetic Analysis[J]. Plant Science Journal, 2015, 33(3): 281-290. DOI: 10.11913/PSJ.2095-0837.2015.30281
    [9]WANG Chuan-Yi, GUO Bao-Lin. The Characteristics of the Frequently Used Nuclear Robosome Gene Spacers and Their Utilizations in Phylogenetic Study of Plants[J]. Plant Science Journal, 2008, 26(4): 417-423.
    [10]CHEN Shao-Feng, DONG Sui-Sui, WU Wei, SHI Su-Hua, ZHOU Pu-Hua. Phylogenetics of Triarrhena and Related Genera Based on ITS Sequence Data[J]. Plant Science Journal, 2007, 25(3): 239-244.
  • Cited by

    Periodical cited type(11)

    1. 李林霞,何兰君,席磊,冯子航,欧光龙. 中国南方松林地理替代分布规律及其气候主导因子研究. 西南林业大学学报(自然科学). 2024(01): 97-105 .
    2. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    3. 谢婧妍,贺晓慧,朱丽,郝瑞敏. 气候变化背景下云南沙棘在中国的潜在地理分布. 防护林科技. 2023(01): 24-29 .
    4. 赵鹏霞,杨旭,杨志玲,田朝霞,羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报. 2023(02): 285-297 .
    5. 周安晟,成彦丽,陈鸿,徐晨,张远兵. 基于MaxEnt模型预测含笑在中国的潜在适生区. 安徽科技学院学报. 2023(06): 19-27 .
    6. 唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼. 气候变化下中国主要生物燃油树种分布与变迁. 生态学报. 2023(24): 10156-10170 .
    7. 缪菁,王勇,王璐,许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测. 南京林业大学学报(自然科学版). 2021(03): 193-198 .
    8. 覃元艺,陈曦. 石栎属物种果实类型及其系统演化研究进展. 云南民族大学学报(自然科学版). 2021(04): 311-320 .
    9. 陈禹衡,陆双飞,毛岭峰. 黄檀属珍稀树种未来适宜区变化预测. 浙江农林大学学报. 2021(04): 837-845 .
    10. 张晓龙,邓童,罗乐,李进宇. 单叶蔷薇潜在适宜区预测及其渐危机制研究. 西北植物学报. 2021(09): 1570-1582 .
    11. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .

    Other cited types(4)

Catalog

    Article views (1146) PDF downloads (1050) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return