Citation: | Chen Zhao, Guan Xin-Yi, Cao Kun-Fang. Coordination between leaf and stem hydraulic characteristics in Machilus species[J]. Plant Science Journal, 2018, 36(5): 729-735. DOI: 10.11913/PSJ.2095-0837.2018.50729 |
[1] |
Pittermann J. The evolution of water transport in plants:an integrated approach[J]. Geobiology, 2010, 8(2):112-139.
|
[2] |
Franks PJ, Beerling DJ, Beerling DJ. CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the phanerozoic[J]. Geobiology, 2009, 7(2):227-236.
|
[3] |
Walls RL. Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set[J]. Am J Bot, 2011, 98(2):244-53.
|
[4] |
Westoby M. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821.
|
[5] |
Sack L, Frole K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees[J]. Ecology, 2006, 87(2):483-491.
|
[6] |
Brodribb TJ, Jordan GJ. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J]. New Phytol, 2011, 192(2):437-448.
|
[7] |
Ashton PMS, Berlyn GP. Leaf adaptations of some Shorea species to sun and shade[J]. New Phytol, 1992, 121(4):587-596.
|
[8] |
Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. J Exp Bot, 2008, 59(12):3317-3325.
|
[9] |
Salleo S, Nardini A, Pitt F,Gullo MAL. Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.)[J]. Plant Cell Environ, 2000, 23(1):71-79.
|
[10] |
Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits[J]. Plant Physiol, 2003, 132(4):2166-2173.
|
[11] |
Carins Murphy MR, Jordan GJ, Brodribb TJ. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata[J]. Plant Cell Environ, 2014, 37(1):124-131.
|
[12] |
Sack L, Scoffoni C. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux method (EFM)[J]. J Vis Exp, 2012, 70(70):249-249.
|
[13] |
Zimmermann MH. Plant structures[J]. Science, 1983, 222(4623):500-501.
|
[14] |
Tyree MT, Sperry JS. Vulnerability of xylem cavitation and embolism[J]. Annu Rev Plant Biol, 1989, 40(1):19-38.
|
[15] |
Cochard H, Nardini AL. Hydraulic architecture of leaf blades:where is the main resistance?[J]. Plant Cell Environ, 2004, 27(10):1257-1267.
|
[16] |
Brodribb TJ, Holbrook NM. Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer[J]. Plant Physiol, 2005, 137(3):1139-1146.
|
[17] |
Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[J]. New Phytol, 2011, 190(3):709-723.
|
[18] |
Jansen S, Choat B, Pletsers A. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms[J]. Am J Bot, 2009, 96(2):409-419.
|
[19] |
Choat B, Cobb AR, Jansen S. Structure and function of bordered pits:new discoveries and impacts on whole-plant hydraulic function[J]. New Phytol, 2008, 177(3):608-626.
|
[20] |
Hacke UG, Sperry JS, Wheeler JK, Castro L. Scaling of angiosperm xylem structure with safety and efficiency[J]. Tree Physiol, 2006, 26(6):689-701.
|
[21] |
Hacke UG, Sperry JS. Functional and ecological xylem anatomy[J]. Perspect Plant Ecol, 2001, 4(2):97-115.
|
[22] |
Bartlett MK, Klein T, Jansen S, Choat B, Sack L. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought[J]. Proc Natl Acad Sci USA, 2016, 113(46):13098.
|
[23] |
Soltis PS, Soltis DE. The origin and diversification of angio-sperms[J]. Am J Bot, 2004, 91(10):1614-1626.
|
[24] |
Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed:a new image of early angiosperm ecology[J]. Paleobiology, 2004, 30(1):82-107.
|
[25] |
Sperry JS, Hacke UG, Feild TS, Sano Y, Sikkema EH. Hydraulic consequences of vessel evolution in angiosperms[J]. Int J Plant Sci, 2007,168(8):1127-1139.
|
[26] |
林夏珍. 浙江润楠属植物的数量分类[J]. 林业科学, 2007, 43(11):151-156.
Lin XZ. Quantitative classificaion of plants of Machilus in Zhejiang Province[J]. Scientia Silvae Sinicae, 2007, 43(11):151-156.
|
[27] |
徐振东, 杨曼, 胡蝶, 丁琼, 费永俊. 润楠属主要树种的资源状况、研究现状和开发利用前景[J]. 长江大学学报:自科版, 2016, 13(3):13-17.
|
[28] |
钟义, 夏念和. 国产润楠属植物的叶表皮特征及其系统学意义[J]. 热带亚热带植物学报, 2010, 18(2):109-121.
Zhong Y, Xia NH. Leaf epidermal features of Machilus (Lauraceae) from China and their systematic significance[J]. J Trop Subtrop Bot, 2010, 18(2):109-121.
|
[29] |
陈俊秋, 李朗, 李捷, 李锡文. 樟科润楠属植物ITS序列贝叶斯分析及其系统学意义[J]. 植物分类与资源学报, 2009, 31(2):117-126.
Chen JQ, Li L, Li J, Li XW. Bayesian inference of nrDNA ITS sequences from Machilus (Lauraceae) and its systematic significance[J]. Acta Botanica Yunnanica, 2009, 31(2):117-126.
|
[30] |
朱华, 王洪, 李保贵, 周仕顺, 张建侯. 西双版纳森林植被研究[J]. 植物科学学报, 2015, 33(5):641-726.
Zhu H, Wang H, Li BG, Zhou SS, Zhang JH. Studies on the forest vegetation of Xishuangbanna[J]. Plant Science Journal, 2015, 33(5):641-726.
|
[31] |
Brodribb TJ, Feild TS. Stem hydraulic supply is linked to leaf photosynthetic capacity:evidence from New Caledonian and Tasmanian rainforests[J]. Plant Cell Environ, 2000, 23(12):1381-1388.
|
[32] |
李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2):301-305.
Li JY, Zhai HB. Hydraulic architecture and drought resis-tance of woody plants[J]. Chinese Journal Applied Ecology, 2000, 11(2):301-305.
|
[33] |
曹敬婷, 朱师丹, 文印, 曹坤芳. 润楠属广布种和狭域种幼苗生理生态特征[J]. 植物科学学报, 2016, 34(5):790-797.
Cao JT, Zhu SD, Wen Y, Cao KF. Eco-physiological traits of leaves from basal angiosperm Machilus species with localized and widespread distribution[J]. Plant Science Journal, 2016, 34(5):790-797.
|
[34] |
Blackman CJ, Brodribb TJ, Jordan GJ. Leaf hydraulic vulnerability influences species bioclimatic limits in a diverse group of woody angiosperms[J]. Oecologia, 2012, 168(1):1-10.
|
[35] |
张亚, 杨石建, 孙梅, 曹坤芳. 基部被子植物气孔性状与叶脉密度的关联进化[J]. 植物科学学报, 2014, 32(4):320-328.
Zhang Y, Yang SJ, Sun M, Cao KF. Stomatal traits are evolutionarily associated with vein density in basal angiosperms[J]. Plant Science Journal, 2014, 32(4):320-328.
|
[36] |
Sack L, Cowan PD, Jaikumar N, Holbrook NM. The ‘hydrology’ of leaves:coordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356.
|
[37] |
Brodribb TJ, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiol, 2007, 144(4):1890-1898.
|
[38] |
Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecol Lett, 2010, 13(2):175-183.
|
[39] |
Drake PL, Froend RH, Franks PJ. Smaller, faster stomata:scaling of stomatal size, rate of response, and stomatal conductance[J]. J Ex Bot, 2013, 64(2):495-505.
|
[40] |
曹敬婷. 润楠属植物的水力结构和生理功能研究[D]. 南宁:广西大学, 2016.
|
[41] |
Feild TS, Wilson JP. Evolutionary voyage of angiosperm vessel structure-function and its significance for early angio-sperm success[J]. Int J Plant Sci, 2012, 173(6):596-609.
|