Advance Search
Chen Zhao, Guan Xin-Yi, Cao Kun-Fang. Coordination between leaf and stem hydraulic characteristics in Machilus species[J]. Plant Science Journal, 2018, 36(5): 729-735. DOI: 10.11913/PSJ.2095-0837.2018.50729
Citation: Chen Zhao, Guan Xin-Yi, Cao Kun-Fang. Coordination between leaf and stem hydraulic characteristics in Machilus species[J]. Plant Science Journal, 2018, 36(5): 729-735. DOI: 10.11913/PSJ.2095-0837.2018.50729

Coordination between leaf and stem hydraulic characteristics in Machilus species

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31470469).

More Information
  • Received Date: March 16, 2018
  • Available Online: October 31, 2022
  • Published Date: October 27, 2018
  • We measured several physiological traits of seven Machilus species to determine the relationship between leaf water supply and demand as well as the relationship between xylem pit characteristics and hydraulic efficiency. Results showed that the seven Machilus species had much higher vein density (VD) than primitive angiosperms, within a moderately high range (9.8-14.1 mm/mm2), and a significant positive relationship between stomatal density (SD) and VD, indicating coevolution of leaf water supply and demand. Furthermore, SD was negatively correlated with guard cell length (GCL) and leaves with larger stomata had higher turgor loss points (TLP). Stem sapwood specific hydraulic conductivity (Ks) was relatively low (0.13-1.87 kg·m-1·s-1·MPa-1), with rather large interspecific variation. Both VD and SD were positively correlated with Ks, reflecting the water relationship between plant leaves and stems. No significant relationship was found between Ks and pit membrane area (PMA), pit aperture area (OPPA), or pit aperture length to width (APF) ratio. Thus, although the Machilus species evolved relatively higher VD and there was coordination between xylem water supply and leaf structure, their xylem anatomical structure was still primitive, with low hydraulic efficiency, and the vessels had scalariform perforations, indicating they can only adapt to relatively humid habitats.
  • [1]
    Pittermann J. The evolution of water transport in plants:an integrated approach[J]. Geobiology, 2010, 8(2):112-139.
    [2]
    Franks PJ, Beerling DJ, Beerling DJ. CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the phanerozoic[J]. Geobiology, 2009, 7(2):227-236.
    [3]
    Walls RL. Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set[J]. Am J Bot, 2011, 98(2):244-53.
    [4]
    Westoby M. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821.
    [5]
    Sack L, Frole K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees[J]. Ecology, 2006, 87(2):483-491.
    [6]
    Brodribb TJ, Jordan GJ. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J]. New Phytol, 2011, 192(2):437-448.
    [7]
    Ashton PMS, Berlyn GP. Leaf adaptations of some Shorea species to sun and shade[J]. New Phytol, 1992, 121(4):587-596.
    [8]
    Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. J Exp Bot, 2008, 59(12):3317-3325.
    [9]
    Salleo S, Nardini A, Pitt F,Gullo MAL. Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.)[J]. Plant Cell Environ, 2000, 23(1):71-79.
    [10]
    Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits[J]. Plant Physiol, 2003, 132(4):2166-2173.
    [11]
    Carins Murphy MR, Jordan GJ, Brodribb TJ. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata[J]. Plant Cell Environ, 2014, 37(1):124-131.
    [12]
    Sack L, Scoffoni C. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux method (EFM)[J]. J Vis Exp, 2012, 70(70):249-249.
    [13]
    Zimmermann MH. Plant structures[J]. Science, 1983, 222(4623):500-501.
    [14]
    Tyree MT, Sperry JS. Vulnerability of xylem cavitation and embolism[J]. Annu Rev Plant Biol, 1989, 40(1):19-38.
    [15]
    Cochard H, Nardini AL. Hydraulic architecture of leaf blades:where is the main resistance?[J]. Plant Cell Environ, 2004, 27(10):1257-1267.
    [16]
    Brodribb TJ, Holbrook NM. Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer[J]. Plant Physiol, 2005, 137(3):1139-1146.
    [17]
    Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[J]. New Phytol, 2011, 190(3):709-723.
    [18]
    Jansen S, Choat B, Pletsers A. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms[J]. Am J Bot, 2009, 96(2):409-419.
    [19]
    Choat B, Cobb AR, Jansen S. Structure and function of bordered pits:new discoveries and impacts on whole-plant hydraulic function[J]. New Phytol, 2008, 177(3):608-626.
    [20]
    Hacke UG, Sperry JS, Wheeler JK, Castro L. Scaling of angiosperm xylem structure with safety and efficiency[J]. Tree Physiol, 2006, 26(6):689-701.
    [21]
    Hacke UG, Sperry JS. Functional and ecological xylem anatomy[J]. Perspect Plant Ecol, 2001, 4(2):97-115.
    [22]
    Bartlett MK, Klein T, Jansen S, Choat B, Sack L. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought[J]. Proc Natl Acad Sci USA, 2016, 113(46):13098.
    [23]
    Soltis PS, Soltis DE. The origin and diversification of angio-sperms[J]. Am J Bot, 2004, 91(10):1614-1626.
    [24]
    Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed:a new image of early angiosperm ecology[J]. Paleobiology, 2004, 30(1):82-107.
    [25]
    Sperry JS, Hacke UG, Feild TS, Sano Y, Sikkema EH. Hydraulic consequences of vessel evolution in angiosperms[J]. Int J Plant Sci, 2007,168(8):1127-1139.
    [26]
    林夏珍. 浙江润楠属植物的数量分类[J]. 林业科学, 2007, 43(11):151-156.

    Lin XZ. Quantitative classificaion of plants of Machilus in Zhejiang Province[J]. Scientia Silvae Sinicae, 2007, 43(11):151-156.
    [27]
    徐振东, 杨曼, 胡蝶, 丁琼, 费永俊. 润楠属主要树种的资源状况、研究现状和开发利用前景[J]. 长江大学学报:自科版, 2016, 13(3):13-17.
    [28]
    钟义, 夏念和. 国产润楠属植物的叶表皮特征及其系统学意义[J]. 热带亚热带植物学报, 2010, 18(2):109-121.

    Zhong Y, Xia NH. Leaf epidermal features of Machilus (Lauraceae) from China and their systematic significance[J]. J Trop Subtrop Bot, 2010, 18(2):109-121.
    [29]
    陈俊秋, 李朗, 李捷, 李锡文. 樟科润楠属植物ITS序列贝叶斯分析及其系统学意义[J]. 植物分类与资源学报, 2009, 31(2):117-126.

    Chen JQ, Li L, Li J, Li XW. Bayesian inference of nrDNA ITS sequences from Machilus (Lauraceae) and its systematic significance[J]. Acta Botanica Yunnanica, 2009, 31(2):117-126.
    [30]
    朱华, 王洪, 李保贵, 周仕顺, 张建侯. 西双版纳森林植被研究[J]. 植物科学学报, 2015, 33(5):641-726.

    Zhu H, Wang H, Li BG, Zhou SS, Zhang JH. Studies on the forest vegetation of Xishuangbanna[J]. Plant Science Journal, 2015, 33(5):641-726.
    [31]
    Brodribb TJ, Feild TS. Stem hydraulic supply is linked to leaf photosynthetic capacity:evidence from New Caledonian and Tasmanian rainforests[J]. Plant Cell Environ, 2000, 23(12):1381-1388.
    [32]
    李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2):301-305.

    Li JY, Zhai HB. Hydraulic architecture and drought resis-tance of woody plants[J]. Chinese Journal Applied Ecology, 2000, 11(2):301-305.
    [33]
    曹敬婷, 朱师丹, 文印, 曹坤芳. 润楠属广布种和狭域种幼苗生理生态特征[J]. 植物科学学报, 2016, 34(5):790-797.

    Cao JT, Zhu SD, Wen Y, Cao KF. Eco-physiological traits of leaves from basal angiosperm Machilus species with localized and widespread distribution[J]. Plant Science Journal, 2016, 34(5):790-797.
    [34]
    Blackman CJ, Brodribb TJ, Jordan GJ. Leaf hydraulic vulnerability influences species bioclimatic limits in a diverse group of woody angiosperms[J]. Oecologia, 2012, 168(1):1-10.
    [35]
    张亚, 杨石建, 孙梅, 曹坤芳. 基部被子植物气孔性状与叶脉密度的关联进化[J]. 植物科学学报, 2014, 32(4):320-328.

    Zhang Y, Yang SJ, Sun M, Cao KF. Stomatal traits are evolutionarily associated with vein density in basal angiosperms[J]. Plant Science Journal, 2014, 32(4):320-328.
    [36]
    Sack L, Cowan PD, Jaikumar N, Holbrook NM. The ‘hydrology’ of leaves:coordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356.
    [37]
    Brodribb TJ, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiol, 2007, 144(4):1890-1898.
    [38]
    Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecol Lett, 2010, 13(2):175-183.
    [39]
    Drake PL, Froend RH, Franks PJ. Smaller, faster stomata:scaling of stomatal size, rate of response, and stomatal conductance[J]. J Ex Bot, 2013, 64(2):495-505.
    [40]
    曹敬婷. 润楠属植物的水力结构和生理功能研究[D]. 南宁:广西大学, 2016.
    [41]
    Feild TS, Wilson JP. Evolutionary voyage of angiosperm vessel structure-function and its significance for early angio-sperm success[J]. Int J Plant Sci, 2012, 173(6):596-609.
  • Related Articles

    [1]Zhang Dong, Song Shuaishuai, Shi Hongwen, Wei Xinzeng, Jiang Mingxi. Impacts of environmental filtering and dispersal limitation on rare and endangered plant communities of the eastern margin of the Qinghai-Tibet Plateau, China[J]. Plant Science Journal, 2025, 43(2): 201-209. DOI: 10.11913/PSJ.2095-0837.24091
    [2]Wang Meng-Hao, Ran Hang, Liu Yan-Yan, Sun Hua-Yue, Cao Ya-Nan, Wang Hong-Wei, Li Jia-Mei. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal, 2023, 41(2): 149-158. DOI: 10.11913/PSJ.2095-0837.22161
    [3]Cao Guan-Long, Zou Dian-Yang, Zhou Run, Li Lang, Li Jie. A study on the phylogeny and species diversity of the genus Cryptocarya in China[J]. Plant Science Journal, 2021, 39(4): 349-357. DOI: 10.11913/PSJ.2095-0837.2021.40349
    [4]Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
    [5]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [6]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [7]HOU Rong, ZHANG Hua, YI Ling-Jun, LIU Jian-Gang, LÜ Rui, WANG Ying. Study on Epiphytic Bryophytes Species Diversity of Forest Ecosystems in the Ancient Rock Stream Periglacial Landform of the Liaoning Eastern Mountains[J]. Plant Science Journal, 2016, 34(6): 857-872. DOI: 10.11913/PSJ.2095-0837.2016.60857
    [8]ZHAO Zhi-Juan, LIU Guo-Xiang, HU Zheng-Yu. A New Combination Species of Freshwater Cladophorales and Its Phylogenetic Analysis[J]. Plant Science Journal, 2015, 33(3): 281-290. DOI: 10.11913/PSJ.2095-0837.2015.30281
    [9]WANG Chuan-Yi, GUO Bao-Lin. The Characteristics of the Frequently Used Nuclear Robosome Gene Spacers and Their Utilizations in Phylogenetic Study of Plants[J]. Plant Science Journal, 2008, 26(4): 417-423.
    [10]CHEN Shao-Feng, DONG Sui-Sui, WU Wei, SHI Su-Hua, ZHOU Pu-Hua. Phylogenetics of Triarrhena and Related Genera Based on ITS Sequence Data[J]. Plant Science Journal, 2007, 25(3): 239-244.
  • Cited by

    Periodical cited type(11)

    1. 李林霞,何兰君,席磊,冯子航,欧光龙. 中国南方松林地理替代分布规律及其气候主导因子研究. 西南林业大学学报(自然科学). 2024(01): 97-105 .
    2. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    3. 谢婧妍,贺晓慧,朱丽,郝瑞敏. 气候变化背景下云南沙棘在中国的潜在地理分布. 防护林科技. 2023(01): 24-29 .
    4. 赵鹏霞,杨旭,杨志玲,田朝霞,羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报. 2023(02): 285-297 .
    5. 周安晟,成彦丽,陈鸿,徐晨,张远兵. 基于MaxEnt模型预测含笑在中国的潜在适生区. 安徽科技学院学报. 2023(06): 19-27 .
    6. 唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼. 气候变化下中国主要生物燃油树种分布与变迁. 生态学报. 2023(24): 10156-10170 .
    7. 缪菁,王勇,王璐,许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测. 南京林业大学学报(自然科学版). 2021(03): 193-198 .
    8. 覃元艺,陈曦. 石栎属物种果实类型及其系统演化研究进展. 云南民族大学学报(自然科学版). 2021(04): 311-320 .
    9. 陈禹衡,陆双飞,毛岭峰. 黄檀属珍稀树种未来适宜区变化预测. 浙江农林大学学报. 2021(04): 837-845 .
    10. 张晓龙,邓童,罗乐,李进宇. 单叶蔷薇潜在适宜区预测及其渐危机制研究. 西北植物学报. 2021(09): 1570-1582 .
    11. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .

    Other cited types(4)

Catalog

    Article views (638) PDF downloads (889) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return