Citation: | Wei Kai-Fa, Li Yi-Xuan. De novo assembly and transcriptome analysis of Hylocereus undulatus during development[J]. Plant Science Journal, 2019, 37(2): 198-210. DOI: 10.11913/PSJ.2095-0837.2019.20198 |
[1] |
Ortiz TA, Takahashi LS. Physical and chemical characte-ristics of pitaya fruits at physiological maturity[J]. Genet Mol Res, 2015, 14(4):14422-39.
|
[2] |
Hua QZ, Chen CJ, Chen Z, Chen PK, Ma YW, et al. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of hylocereus polyrhizus[J]. Front Plant Sci, 2016, 6:1179.
|
[3] |
Dong HS, Lee S, Heo DY, Kim YS, Cho SK, et al. Meta-bolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity[J]. J Agric Food Chem, 2014, 62(34):8764-8771.
|
[4] |
Kim H, Choi HK, Moon JY, Kim YS, Mosaddik A, et al. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content[J]. J Food Sci, 2011, 76(1):38-45.
|
[5] |
Kishore K. Phenological growth stages of dragon fruit (Hylocereus undatus) according to the extended BBCH-scale[J]. Scientia Horticulturae, 2016, 213:294-302.
|
[6] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652.
|
[7] |
Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate:reference-free quality assessment of de novo transcriptome assemblies[J]. Genome Res, 2016, 26(8):1134-1144.
|
[8] |
Li W, Godzik A. Cd-Hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13):1658-1689.
|
[9] |
SimãO FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs[J]. Bioinformatics, 2015, 31(19):3210-3212.
|
[10] |
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods, 2015, 12(1):59-60.
|
[11] |
Conesa A, Götz, S. Blast2GO:A comprehensive suite for functional analysis in plant genomics[J]. Int J Plant Genomics, 2008, 2008:619832.
|
[12] |
Chen Xie, Mao XZ, Huang JJ, Yang D, Wu JM, et al. KOBAS 2.0:A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39:316-322.
|
[13] |
Finn RD, Clements J, Eddy SR. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Res, 2011, 39:29-37.
|
[14] |
Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1):323-323.
|
[15] |
Ernst J, Bar-Joseph Z. STEM:a tool for the analysis of short time series gene expression data[J]. BMC Bioinformatics, 2006, 7(1):191.
|
[16] |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550.
|
[17] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
|
[18] |
Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, et al. BCFtools/RoH:a hidden Markov model approach for detecting autozygosity from next-generation sequencing data[J]. Bioinformatics, 2016, 32(11):1749-1751.
|
[19] |
Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, et al. Evolution of the PEBP gene family in plants:functional diversification in seed plant evolution[J]. Plant physiol, 2011, 156(4):1967-1977.
|
[20] |
Wickland DP, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family:functional evolution and molecular mechanisms[J]. Mol Plant, 2015, 8(7):983-997.
|
[21] |
Cai D, Liu H, Sang N, Huang X. Identification and cha-racterization of CONSTANS-like (COL) gene family in upland cotton (Gossypium hirsutum L.)[J]. PLoS One, 2017, 12(6):e0179038.
|
[22] |
Golembeski GS, Kinmonth-Schultz HA, Song YH, Imaizumi T. Photoperiodic flowering regulation in Arabidopsis thaliana[J]. Adv Bot Res, 2014, 72:1-28.
|
[23] |
鲜登宇, 江为, 赵夏云, 汤青林,宋明, 等. 开花整合子SOC1花期调控的分子机制[J]. 中国蔬菜, 2013, 1(6):1-8.
Xian DY, Jiang W, Zhao XY, Tang QL, Song M, et al. Molecular mechanism of flowering time control by flowe-ring integration SOC1[J]. China Vegetables, 2013, 1(6):1-8.
|
[24] |
Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, et al. Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering[J]. Proc Natl Acad Sci USA, 2014, 111(49):17672-17677.
|
[25] |
Putterill J, Varkonyi-Gasic E. FT and florigen long-distance flowering control in plants[J]. Curr Opin Plant Biol, 2016, 33:77-82.
|