Advance Search
Wei Kai-Fa, Li Yi-Xuan. De novo assembly and transcriptome analysis of Hylocereus undulatus during development[J]. Plant Science Journal, 2019, 37(2): 198-210. DOI: 10.11913/PSJ.2095-0837.2019.20198
Citation: Wei Kai-Fa, Li Yi-Xuan. De novo assembly and transcriptome analysis of Hylocereus undulatus during development[J]. Plant Science Journal, 2019, 37(2): 198-210. DOI: 10.11913/PSJ.2095-0837.2019.20198

De novo assembly and transcriptome analysis of Hylocereus undulatus during development

Funds: 

This work was supported by a grant from the Industrial Technology Development and Application Plan of Foreign Cooperation Projects of Fujian Province (2015I0006).

More Information
  • Received Date: September 24, 2018
  • Revised Date: November 07, 2018
  • Available Online: October 31, 2022
  • Published Date: April 27, 2019
  • High-throughput sequencing was used to analyze the gene expression of the reproductive buds, fruits, and shoots of Hylocereus undulatus Britt ‘Dahong2’ at different developmental stages. In total, 468.68 Gb of raw data were generated and de novo assembled into 239 152 transcripts and 162 519 unigenes. Approximately 53.74% of all unigenes were annotated based on seven public databases. In total, 600 283 SNPs and 56147 SSRs were identified from 43 506 and 16 251 unigenes, respectively. Gene expression analysis showed that 31, 7, 5, 152, 17, 63, 17, and 8 unigenes were specifically expressed in Fl510, Fl513, Fl514, Fl518, F711, F715, S513, and S419, respectively. Through GO and KEGG enrichment analyses, several unique GO terms and metabolic pathways in different tissues were identified; for example, terpenoid backbone biosynthesis (ko00900) showed significant enrichment in Fl510. We also focused on the molecular mechanism of H.undulatus ‘Dahong2’ flower development and identified a suite of unigenes involved in floral development, including COL, FT-like, meristem identity, and organ identity genes.
  • [1]
    Ortiz TA, Takahashi LS. Physical and chemical characte-ristics of pitaya fruits at physiological maturity[J]. Genet Mol Res, 2015, 14(4):14422-39.
    [2]
    Hua QZ, Chen CJ, Chen Z, Chen PK, Ma YW, et al. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of hylocereus polyrhizus[J]. Front Plant Sci, 2016, 6:1179.
    [3]
    Dong HS, Lee S, Heo DY, Kim YS, Cho SK, et al. Meta-bolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity[J]. J Agric Food Chem, 2014, 62(34):8764-8771.
    [4]
    Kim H, Choi HK, Moon JY, Kim YS, Mosaddik A, et al. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content[J]. J Food Sci, 2011, 76(1):38-45.
    [5]
    Kishore K. Phenological growth stages of dragon fruit (Hylocereus undatus) according to the extended BBCH-scale[J]. Scientia Horticulturae, 2016, 213:294-302.
    [6]
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652.
    [7]
    Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate:reference-free quality assessment of de novo transcriptome assemblies[J]. Genome Res, 2016, 26(8):1134-1144.
    [8]
    Li W, Godzik A. Cd-Hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13):1658-1689.
    [9]
    SimãO FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs[J]. Bioinformatics, 2015, 31(19):3210-3212.
    [10]
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods, 2015, 12(1):59-60.
    [11]
    Conesa A, Götz, S. Blast2GO:A comprehensive suite for functional analysis in plant genomics[J]. Int J Plant Genomics, 2008, 2008:619832.
    [12]
    Chen Xie, Mao XZ, Huang JJ, Yang D, Wu JM, et al. KOBAS 2.0:A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39:316-322.
    [13]
    Finn RD, Clements J, Eddy SR. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Res, 2011, 39:29-37.
    [14]
    Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1):323-323.
    [15]
    Ernst J, Bar-Joseph Z. STEM:a tool for the analysis of short time series gene expression data[J]. BMC Bioinformatics, 2006, 7(1):191.
    [16]
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550.
    [17]
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
    [18]
    Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, et al. BCFtools/RoH:a hidden Markov model approach for detecting autozygosity from next-generation sequencing data[J]. Bioinformatics, 2016, 32(11):1749-1751.
    [19]
    Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, et al. Evolution of the PEBP gene family in plants:functional diversification in seed plant evolution[J]. Plant physiol, 2011, 156(4):1967-1977.
    [20]
    Wickland DP, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family:functional evolution and molecular mechanisms[J]. Mol Plant, 2015, 8(7):983-997.
    [21]
    Cai D, Liu H, Sang N, Huang X. Identification and cha-racterization of CONSTANS-like (COL) gene family in upland cotton (Gossypium hirsutum L.)[J]. PLoS One, 2017, 12(6):e0179038.
    [22]
    Golembeski GS, Kinmonth-Schultz HA, Song YH, Imaizumi T. Photoperiodic flowering regulation in Arabidopsis thaliana[J]. Adv Bot Res, 2014, 72:1-28.
    [23]
    鲜登宇, 江为, 赵夏云, 汤青林,宋明, 等. 开花整合子SOC1花期调控的分子机制[J]. 中国蔬菜, 2013, 1(6):1-8.

    Xian DY, Jiang W, Zhao XY, Tang QL, Song M, et al. Molecular mechanism of flowering time control by flowe-ring integration SOC1[J]. China Vegetables, 2013, 1(6):1-8.
    [24]
    Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, et al. Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering[J]. Proc Natl Acad Sci USA, 2014, 111(49):17672-17677.
    [25]
    Putterill J, Varkonyi-Gasic E. FT and florigen long-distance flowering control in plants[J]. Curr Opin Plant Biol, 2016, 33:77-82.
  • Related Articles

    [1]Li Li-Jun, Miao Ling-Feng, Li Da-Dong, Yang Fan. Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings[J]. Plant Science Journal, 2023, 41(3): 358-369. DOI: 10.11913/PSJ.2095-0837.22196
    [2]Guo Lu-Yao, Miao Ling-Feng, Li Da-Dong, Xiang Li-Shan, Yang Fan. Effects of nitrogen addition and warming on growth, development, and physiological characteristics of Dalbergia odorifera T. Chen seedlings[J]. Plant Science Journal, 2022, 40(2): 259-268. DOI: 10.11913/PSJ.2095-0837.2022.20259
    [3]Cai Yuan-Bao, Yang Xiang-Yan. Codon usage bias and its influencing factors in the chloroplast genome of Macadamia integrifolia Maiden & Betche[J]. Plant Science Journal, 2022, 40(2): 229-239. DOI: 10.11913/PSJ.2095-0837.2022.20229
    [4]Wang Yu-Chen, Wang Wen-Juan, Zhong Yue-Ming, Lei Shan-Qing, Li Jing-Wen. Study on the foraging behavior of clonal roots and its influencing factors in Populus euphratica Oliv.[J]. Plant Science Journal, 2020, 38(3): 410-417. DOI: 10.11913/PSJ.2095-0837.2020.30410
    [5]Pu Yu-Jin, Zhang Li-Jia, Miao Ling-Feng, Yang Fan. Effects of different calcium concentrations on the growth and physiological characteristics of Dalbergia odorifera under low temperatures[J]. Plant Science Journal, 2019, 37(2): 251-259. DOI: 10.11913/PSJ.2095-0837.2019.20251
    [6]Wang Yue-Lin, Xu Da-Ping, Yang Zeng-Jiang, Liu Xiao-Jin, Hong Zhou, Zhang Ning-Nan. Effects of transplantation and potassium fertilizer on the photosynthetic characteristics and chlorophyll content of Dalbergia odorifera[J]. Plant Science Journal, 2018, 36(6): 879-887. DOI: 10.11913/PSJ.2095-0837.2018.60879
    [7]ZHU Xia-Xia, ZHANG Hua, ZHU Yan, LIU Jian-Gang, ZHU Ye-Ping, LÜ Rui, WANG Ying, MA Ming-Jun. Forest Community Species Diversity and the Influencing Factors in the Rock Stream Periglacial Landforms of Mt. Laotudingzi[J]. Plant Science Journal, 2016, 34(1): 67-77. DOI: 10.11913/PSJ.2095-0837.2016.10067
    [8]YANG Qi-He, YE Wan-Hui, LIAO Fu-Lin, LIU Zhi-Wei, YIN Xiao-Juan. Experimental Factors Affecting Studying Characteristics of Seed Storage[J]. Plant Science Journal, 2006, 24(5): 469-475.
    [9]HUANG Xuan, XU Zi-Qin, HAO Jian-Guo, LI Jing. Factors Affecting Wheat(Triticum aestivum L.)Transformation Mediated by Biolistic Bombardment[J]. Plant Science Journal, 2004, 22(2): 111-115.
    [10]Zhang Youde, Zhang Junzhi, Mei Fangzhu, Zhou Daming, Hu Delin, Wang Yuanfu. THE TILLERING RULE ON EULALIOPSlS BINATA AND ITS CONTROLLING FACTORS[J]. Plant Science Journal, 1993, 11(2): 185-192.
  • Cited by

    Periodical cited type(6)

    1. Hui Wang,Jiping Zhang,Benyong Wei,Qing Qiao,Wentao Zhang,Yangcui Ning,Chunlan Liu. The effects of climate change on Pinus tabulaeformis radial growth in the Xiaowutai Mountains, northern China. Journal of Forestry Research. 2025(01): 115-125 .
    2. 常素玲. 山西省关帝山林区油松径向生长对气候的响应. 山西林业科技. 2024(01): 24-27 .
    3. 韦晓旭,彭剑峰,彭猛,李轩,崔佳月,李金宽,魏亚飞. 中国南北过渡带油松径向生长对气候因子的响应研究——以鸡公山国家级自然保护区为例. 地理科学. 2024(09): 1643-1652 .
    4. 李镇江,于晨一,刘升云,闫瑞环,黄心邓,刘晓静,陈志成,王婷. 伏牛山南坡3种针叶树径向生长对气候变化的响应. 应用生态学报. 2023(05): 1178-1186 .
    5. 李夏榕,陈怡歆,陈静飞,朱济友,孙广鹏,韦柳端,张新娜,徐程扬. 气候变化对北京近远郊地区油松径向生长影响的比较研究. 北京林业大学学报. 2022(01): 19-28 .
    6. 乔梁,陈雪,高梦竹,王子洋. 气候旅游资源-植被观赏气象指数研究. 黑龙江气象. 2022(03): 18-21 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return