Advance Search
Liu Qing, Wang Zhi-Yi, Wu Kun, Xing Cheng-Hua, Chang Hong, Rao Yu-Chun, Cai Miao-Zhen. Comparison of aluminum accumulation ability of cell wall polysaccharides in Oryza sativa and Triticum aestivum root tips under aluminum toxicity[J]. Plant Science Journal, 2019, 37(4): 513-520. DOI: 10.11913/PSJ.2095-0837.2019.40513
Citation: Liu Qing, Wang Zhi-Yi, Wu Kun, Xing Cheng-Hua, Chang Hong, Rao Yu-Chun, Cai Miao-Zhen. Comparison of aluminum accumulation ability of cell wall polysaccharides in Oryza sativa and Triticum aestivum root tips under aluminum toxicity[J]. Plant Science Journal, 2019, 37(4): 513-520. DOI: 10.11913/PSJ.2095-0837.2019.40513

Comparison of aluminum accumulation ability of cell wall polysaccharides in Oryza sativa and Triticum aestivum root tips under aluminum toxicity

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31101599), Zhejiang Natural Science Foundation (LY15C150004), and Zhejiang Subtropical Soil and Plant Nutrition Key Research Laboratory.

More Information
  • Received Date: December 24, 2018
  • Revised Date: January 29, 2019
  • Available Online: October 31, 2022
  • Published Date: August 27, 2019
  • Hydroponics were used to compare eight genotypes of four Poaceae plants (Oryza sativa L., Zea mays L., Sorghum bicolor (L.) Moench, and Triticum aestivum L.). We investigated their resistance to aluminum (Al) and analyzed the polysaccharide components of the cell wall after Al accumulation. Results revealed that under 5-200 μmol/L Al treatment, rice exhibited the strongest Al resistance, whereas wheat demonstrated the weakest, thus further experiments were carried out on rice and wheat. Under 50 μmol/L Al treatment, the content of pectin and hemicellulose 1 was higher in the wheat root tips than that in the rice root tips. Furthermore, Al content in the cell wall of ‘Nipponbare’ and ‘Zhefu 802’ seedlings accounted for 78.7% and 91.6% of that in the root tips, and in ‘Yangmai 18’ and ‘Yangmai 16’ seedlings accounted for 64.9% and 72.1% of that in the root tips. The Al adsorption-desorption tests further showed that Al uptake in the wheat root tip cell wall was higher than that for rice, whereas the desorption rate was lower than that for rice. The cell wall was the main site for Al accumulation, the pectin component in the cell wall was the major binding site of Al-sensitive rice and wheat genotypes, and the hemicellulose 1 component was the major binding site of Al-tolerant rice and wheat genotypes.
  • [1]
    吴亚, 陈思, 张卫红, 刘大林, 范吉标, 等. 多花黑麦草对铝胁迫的生长生理响应[J]. 植物科学学报, 2018, 36(5):755-760.

    Wu Y, Chen S, Zhang WH, Liu DL, Fan JB, et al. Growth and physiological responses of Lolium multiflorum to aluminum stress[J]. Plant Science Journal, 2018, 36(5):755-760.
    [2]
    Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, et al. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis[J]. Plant Physiol, 2011, 155(4):1885-1892.
    [3]
    Yang Y, Dai CY, Guo LP, Qu Y, Yang XY, et al. Salicylic acid reduces the accumulation of aluminum in root cell wall pectin via the NO signaling pathway[J]. Plant Soil, 2018, 430(1-2):171-184.
    [4]
    Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, et al. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex[J]. Plant Physiol, 2008, 146(2):602-611.
    [5]
    Zhu XF, Wan JX, Wu Q, Zhao XS, Zheng S, Shen RF. PARVUS affects aluminium sensitivity by modulating the structure of glucuronoxylan in Arabidopsis thaliana[J]. Plant Cell Environ, 2017, 40(9):1916-1925.
    [6]
    Wan JX, Zhu XF, Wang YQ, Liu LY, Zhang BC, et al. Xyloglucan fucosylation modulates arabidopsis cell wall hemicellulose aluminium binding capacity[J]. Sci Rep, 2018, 8(1):428-437.
    [7]
    Safari M, Ghanati F, Safarnejad MR, Chashmi NA. The contribution of cell wall composition in the expansionof Camellia sinensis seedlings roots in response to aluminum[J]. Planta, 2018, 247(2):381-392.
    [8]
    Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, et al. Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice[J]. Front Plant Sci, 2018, 9:1-14.
    [9]
    Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, et al. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots[J]. Plant Cell Environ, 2015, 38(7):1382-1390.
    [10]
    Sun CL, Lu LL, Yu Y, Liu LJ, Hu Y, et al. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots[J]. J Exp Bot, 2016, 67(3):979-989.
    [11]
    Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends Plant Sci, 2001, 6(6):273-278.
    [12]
    Lin XY, Zhang YS, Luo AC. Differences of aluminum tole-rance on wheat genotypes and its screening techniques[J]. Plant Nutri Fertil Sci, 2001, 7(1):64-70.
    [13]
    Wang C, Zheng MM, Hu AY, Zhu CQ, Shen RF. Dia-zotroph abundance and community composition in an acidic soil in response to aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) cultivars under two nitrogen fertilizer forms[J]. Plant Soil, 2018, 424(1-2):463-478.
    [14]
    Famoso AN, Clark RT, Shaff JE, Craft E, Mccouch SR, Kochian LV. Development of a novel aluminum tolerance phenotyping plantform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms[J]. Plant physiol, 2010, 153(4):1678-1691.
    [15]
    Delhaize E, Ryan PR. Aluminum toxicity and tolerance in plants[J]. Plant Cell Physiol, 1995, 107(2):315-321.
    [16]
    Horst WJ, Wang YX, Eticha D. The role of the root apo-plast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants:a review[J]. Ann Bot, 2010, 106(1):1-13.
    [17]
    郑绍建. 细胞壁在植物抗营养逆境中的作用及其分子生理机制[J]. 中国科学:生命科学, 2014, 44(4):334-341.

    Zheng SJ. The role of cell wall in plant anti-nutritional stress and its molecular physiological mechanism[J]. Chinese Science:Life Sciences, 2014, 44(4):334-341.
    [18]
    Degenhard J, Larsen PB, Howell SH, Kochian LV. Aluminum resistance in the arabidopsis mutantalr-104 is caused by an aluminum-induced increase in rhizosphere pH[J]. Plant Physiol, 1998, 117:19-27.
    [19]
    Tayor GJ. Current views of the aluminum stress response:the physiological basis of tolerance[J]. Curr Top Plant Biol Med Physiol, 1991, 10:57-93.
    [20]
    Richard L, Qin LX, Gadal P, Goldberg R. Molecular cloning and characterisation of a putative pectin methyleste-rase cDNA in Arabidopsis thaliana(L.)[J]. FEBS Lett, 1994, 355(2):135-139.
    [21]
    Kochian LV, Pifieros MA, Liu JP, Jurandir VM. Plant adaptation to acid soils:the molecular basis for crop alumium resistance[J]. Annu Rev Plant Biol, 2015, 66:571-598.
    [22]
    Liu J, Pifieros M, Kochian LV. The role of alumium sensing and signaling in plant alumium resistance[J]. J Integr Plant Biol, 2014, 56(3):221-230.
    [23]
    Ma JF, Shen RF, Zhao ZQ, Wissuwa M, Takeuchi Y, et al. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance[J]. Plant Cell Physiol, 2002, 43(6):652-659.
    [24]
    Lou HQ, Gong YL, Fan W, Xu JM, Liu Y, et al. A formate dehydrogenase confers tolerance to aluminum and low pH[J]. Plant physiol, 2008, 146(2):602-611.
    [25]
    Liu WJ, Xu FJ, Lü T, Zhou WW, Chen Y, et al. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants[J]. Sci Total Environ, 2018, 627:462-469.
    [26]
    Chang YC, Yamamoto Y, Matsumoto H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron[J]. Plant Cell Environ, 1999, 22(8):1009-1017.
    [27]
    Liu DQ, Wang CX, Cui XM. Distribution pattern of aluminum in panax notoginseng, a native medicinal plant adapted to acidic red soils[J]. Plant Soil, 2018, 423(1-2):375-384.
    [28]
    Wang SY, Yuan SL, Su LT, Lü AM, Zhou P, An Y. Aluminum toxicity in alfalfa (Medicago sativa) is alleviated by exogenous foliar IAA inducing reduction of Al accumulation in cell wall[J]. Environ Exo Bot, 2017, 139:1-13.
    [29]
    Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, et al.XTH31, encoding an invitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucau content, and aluminum binding capacity in Arabidopsis[J]. Plant Cell, 2012, 24(11):4731-4747.
    [30]
    Zhu XF, Zhao XS, Wang B, Wu Q, Shen RF. Elevated carbon dioxide alleviates aluminum toxicity by decreasing cell wall hemicellulose in rice (Oryza sativa)[J]. Front Physiol, 2017, 8:1-9.
    [31]
    Yu Y, Jin CW, Sun CL, Wang JH, Ye YQ, et al. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat[J]. J Hazard Mater, 2015, 299:280-288.
    [32]
    Li DQ, Shu ZF, Ye XL, Zhu JJ, Pan JT, et al. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiol Bioch, 2017, 119:265-274.
    [33]
    Zhu XF, Zhu CQ, Zhao XS, Zheng SJ, Shen RF. Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa) by regulating cell-wall pectin and enhancing phosphate translocation to shoots[J]. Ann Bot, 2016, 118(4):645-653.
  • Related Articles

    [1]Dai Xi-Ling, Cao Jian-Guo, Wang Quan-Xi. Ultrastructural observations of spore wall development in Phaeoceros carolinianus (Michx.) Prosk.[J]. Plant Science Journal, 2020, 38(3): 293-300. DOI: 10.11913/PSJ.2095-0837.2020.30293
    [2]Liu Hai-Tao, Wang Xi, Liu Ling, Gao Yan-Hua, Mu Dan-Ping, Chen Yu-Di. Effects of carboxylated multi-walled carbon nanotubes, mixed salt, and their combination on physiological characteristics of Oryza sativa seedlings[J]. Plant Science Journal, 2019, 37(4): 540-550. DOI: 10.11913/PSJ.2095-0837.2019.40540
    [3]Liu Ya-Lin, Wu Xiu-Wen, Yan Lei, Du Chen-Qing, Jiang Cun-Cang. Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall[J]. Plant Science Journal, 2018, 36(5): 767-773. DOI: 10.11913/PSJ.2095-0837.2018.50767
    [4]ZHAO Jing, CAI Shen-Wen, XU Zhong-Rui, XIONG Zhi-Ting. Isolation and Activity Analysis of Cell Wall Invertase Gene Promoter (EhcwINVP) from Elsholtzia haichowensis Sun[J]. Plant Science Journal, 2016, 34(3): 420-429. DOI: 10.11913/PSJ.2095-0837.2016.30420
    [5]WANG Ting-Jie, ZHANG Liang, HAN Qiong, ZHENG Feng-Xia, WANG Tian-Qi, FENG Na-Na, WANG Tai-Xia. Effects of Stalk Cell Wall and Tissue on the Compressive Strength of Maize[J]. Plant Science Journal, 2015, 33(1): 109-115. DOI: 10.11913/PSJ.2095-0837.2015.10109
    [6]WU Yan-Jun, YU Jing, CAO Tong. Observation of Spore Morphology and Wall Structure of Eight Species of Frullania (Frullaniaceae;Hepaticae) by SEM and TEM[J]. Plant Science Journal, 2008, 26(4): 337-342.
    [7]HE Yu-Chi, TANG Xing-Chun, HE Yu-Qing, SUN Meng-Xiang. Roles of Cell Wall in Cell Polarity Establishment and Embryogenesis[J]. Plant Science Journal, 2006, 24(5): 464-468.
    [8]Yang Yuhua, Wu Lishu, Wang Yunhua, Cao Xiangyun. ADVANCES ON RESEARCH OF THE EFFECTS OF BORON ON PLANT CELL WALL[J]. Plant Science Journal, 1999, 17(2): 173-177.
    [9]Lu Xiaoxian, Huang Lan, Mao Yanping, Jin Yixing. THE ANALYSIS OF POLYSACCHARIDE CONSTITUENTS OF BUPLEURUM MARGINATUM WALL. EX DC.[J]. Plant Science Journal, 1997, 15(1): 94-96.
    [10]Sun Mengxiang, Wang Zhaoan. A STUDY ON MICROSPORE ABORTION AND THE RELATION TO ABNORMAL WALL LAYERS IN PAULOWNIA SP.[J]. Plant Science Journal, 1991, 9(1): 16-20.
  • Cited by

    Periodical cited type(8)

    1. 师雪淇,程金花,管凝,侯芳,沈子雅. 喀斯特地区典型植被根系对优先流的影响. 水土保持研究. 2024(05): 73-83 .
    2. 庞榆,贺同鑫,孙建飞,宁文彩,裴广廷,胡宝清,王斌. 北热带喀斯特森林优势树种细根生物量估算模型构建. 植物生态学报. 2024(10): 1312-1325 .
    3. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    4. 吴静,盛茂银,肖海龙,郭超,王霖娇. 西南喀斯特石漠化环境适生植物细根构型及其与细根和根际土壤养分计量特征的相关性. 生态学报. 2022(02): 677-687 .
    5. 林伟山,德科加,向雪梅,钱诗祎,魏希杰,冯廷旭. 天然草地植被-土壤系统碳、氮、磷(钾)库的时空分布格局研究进展. 青海畜牧兽医杂志. 2022(02): 45-51+68 .
    6. 杨慧,宁静,马洋,周孟霞,曹建华. 西南岩溶区植被碳循环研究进展. 广西植物. 2022(06): 903-913 .
    7. 薛建辉,周之栋,吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展. 南京林业大学学报(自然科学版). 2022(06): 135-145 .
    8. 张新生,卢杰. 根系生物量及其对根际生态系统响应的研究进展. 江苏农业科学. 2021(17): 39-45 .

    Other cited types(9)

Catalog

    Article views (637) PDF downloads (482) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return