Citation: | Liu Qing, Wang Zhi-Yi, Wu Kun, Xing Cheng-Hua, Chang Hong, Rao Yu-Chun, Cai Miao-Zhen. Comparison of aluminum accumulation ability of cell wall polysaccharides in Oryza sativa and Triticum aestivum root tips under aluminum toxicity[J]. Plant Science Journal, 2019, 37(4): 513-520. DOI: 10.11913/PSJ.2095-0837.2019.40513 |
[1] |
吴亚, 陈思, 张卫红, 刘大林, 范吉标, 等. 多花黑麦草对铝胁迫的生长生理响应[J]. 植物科学学报, 2018, 36(5):755-760.
Wu Y, Chen S, Zhang WH, Liu DL, Fan JB, et al. Growth and physiological responses of Lolium multiflorum to aluminum stress[J]. Plant Science Journal, 2018, 36(5):755-760.
|
[2] |
Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, et al. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis[J]. Plant Physiol, 2011, 155(4):1885-1892.
|
[3] |
Yang Y, Dai CY, Guo LP, Qu Y, Yang XY, et al. Salicylic acid reduces the accumulation of aluminum in root cell wall pectin via the NO signaling pathway[J]. Plant Soil, 2018, 430(1-2):171-184.
|
[4] |
Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, et al. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex[J]. Plant Physiol, 2008, 146(2):602-611.
|
[5] |
Zhu XF, Wan JX, Wu Q, Zhao XS, Zheng S, Shen RF. PARVUS affects aluminium sensitivity by modulating the structure of glucuronoxylan in Arabidopsis thaliana[J]. Plant Cell Environ, 2017, 40(9):1916-1925.
|
[6] |
Wan JX, Zhu XF, Wang YQ, Liu LY, Zhang BC, et al. Xyloglucan fucosylation modulates arabidopsis cell wall hemicellulose aluminium binding capacity[J]. Sci Rep, 2018, 8(1):428-437.
|
[7] |
Safari M, Ghanati F, Safarnejad MR, Chashmi NA. The contribution of cell wall composition in the expansionof Camellia sinensis seedlings roots in response to aluminum[J]. Planta, 2018, 247(2):381-392.
|
[8] |
Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, et al. Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice[J]. Front Plant Sci, 2018, 9:1-14.
|
[9] |
Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, et al. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots[J]. Plant Cell Environ, 2015, 38(7):1382-1390.
|
[10] |
Sun CL, Lu LL, Yu Y, Liu LJ, Hu Y, et al. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots[J]. J Exp Bot, 2016, 67(3):979-989.
|
[11] |
Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends Plant Sci, 2001, 6(6):273-278.
|
[12] |
Lin XY, Zhang YS, Luo AC. Differences of aluminum tole-rance on wheat genotypes and its screening techniques[J]. Plant Nutri Fertil Sci, 2001, 7(1):64-70.
|
[13] |
Wang C, Zheng MM, Hu AY, Zhu CQ, Shen RF. Dia-zotroph abundance and community composition in an acidic soil in response to aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) cultivars under two nitrogen fertilizer forms[J]. Plant Soil, 2018, 424(1-2):463-478.
|
[14] |
Famoso AN, Clark RT, Shaff JE, Craft E, Mccouch SR, Kochian LV. Development of a novel aluminum tolerance phenotyping plantform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms[J]. Plant physiol, 2010, 153(4):1678-1691.
|
[15] |
Delhaize E, Ryan PR. Aluminum toxicity and tolerance in plants[J]. Plant Cell Physiol, 1995, 107(2):315-321.
|
[16] |
Horst WJ, Wang YX, Eticha D. The role of the root apo-plast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants:a review[J]. Ann Bot, 2010, 106(1):1-13.
|
[17] |
郑绍建. 细胞壁在植物抗营养逆境中的作用及其分子生理机制[J]. 中国科学:生命科学, 2014, 44(4):334-341.
Zheng SJ. The role of cell wall in plant anti-nutritional stress and its molecular physiological mechanism[J]. Chinese Science:Life Sciences, 2014, 44(4):334-341.
|
[18] |
Degenhard J, Larsen PB, Howell SH, Kochian LV. Aluminum resistance in the arabidopsis mutantalr-104 is caused by an aluminum-induced increase in rhizosphere pH[J]. Plant Physiol, 1998, 117:19-27.
|
[19] |
Tayor GJ. Current views of the aluminum stress response:the physiological basis of tolerance[J]. Curr Top Plant Biol Med Physiol, 1991, 10:57-93.
|
[20] |
Richard L, Qin LX, Gadal P, Goldberg R. Molecular cloning and characterisation of a putative pectin methyleste-rase cDNA in Arabidopsis thaliana(L.)[J]. FEBS Lett, 1994, 355(2):135-139.
|
[21] |
Kochian LV, Pifieros MA, Liu JP, Jurandir VM. Plant adaptation to acid soils:the molecular basis for crop alumium resistance[J]. Annu Rev Plant Biol, 2015, 66:571-598.
|
[22] |
Liu J, Pifieros M, Kochian LV. The role of alumium sensing and signaling in plant alumium resistance[J]. J Integr Plant Biol, 2014, 56(3):221-230.
|
[23] |
Ma JF, Shen RF, Zhao ZQ, Wissuwa M, Takeuchi Y, et al. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance[J]. Plant Cell Physiol, 2002, 43(6):652-659.
|
[24] |
Lou HQ, Gong YL, Fan W, Xu JM, Liu Y, et al. A formate dehydrogenase confers tolerance to aluminum and low pH[J]. Plant physiol, 2008, 146(2):602-611.
|
[25] |
Liu WJ, Xu FJ, Lü T, Zhou WW, Chen Y, et al. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants[J]. Sci Total Environ, 2018, 627:462-469.
|
[26] |
Chang YC, Yamamoto Y, Matsumoto H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron[J]. Plant Cell Environ, 1999, 22(8):1009-1017.
|
[27] |
Liu DQ, Wang CX, Cui XM. Distribution pattern of aluminum in panax notoginseng, a native medicinal plant adapted to acidic red soils[J]. Plant Soil, 2018, 423(1-2):375-384.
|
[28] |
Wang SY, Yuan SL, Su LT, Lü AM, Zhou P, An Y. Aluminum toxicity in alfalfa (Medicago sativa) is alleviated by exogenous foliar IAA inducing reduction of Al accumulation in cell wall[J]. Environ Exo Bot, 2017, 139:1-13.
|
[29] |
Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, et al.XTH31, encoding an invitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucau content, and aluminum binding capacity in Arabidopsis[J]. Plant Cell, 2012, 24(11):4731-4747.
|
[30] |
Zhu XF, Zhao XS, Wang B, Wu Q, Shen RF. Elevated carbon dioxide alleviates aluminum toxicity by decreasing cell wall hemicellulose in rice (Oryza sativa)[J]. Front Physiol, 2017, 8:1-9.
|
[31] |
Yu Y, Jin CW, Sun CL, Wang JH, Ye YQ, et al. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat[J]. J Hazard Mater, 2015, 299:280-288.
|
[32] |
Li DQ, Shu ZF, Ye XL, Zhu JJ, Pan JT, et al. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiol Bioch, 2017, 119:265-274.
|
[33] |
Zhu XF, Zhu CQ, Zhao XS, Zheng SJ, Shen RF. Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa) by regulating cell-wall pectin and enhancing phosphate translocation to shoots[J]. Ann Bot, 2016, 118(4):645-653.
|