Advance Search
Fei Yue, Xia Sheng-Ying, Xiong Hai-Yan, Liu Zhi-Xiong. Cloning and expression analysis of the CyfaSTK gene from Cymbidium faberi[J]. Plant Science Journal, 2019, 37(5): 602-609. DOI: 10.11913/PSJ.2095-0837.2019.50602
Citation: Fei Yue, Xia Sheng-Ying, Xiong Hai-Yan, Liu Zhi-Xiong. Cloning and expression analysis of the CyfaSTK gene from Cymbidium faberi[J]. Plant Science Journal, 2019, 37(5): 602-609. DOI: 10.11913/PSJ.2095-0837.2019.50602

Cloning and expression analysis of the CyfaSTK gene from Cymbidium faberi

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31101202) and Excellent Master Dissertation Cultivation Program of Yangtze University (YS2018049).

More Information
  • Received Date: May 11, 2019
  • Available Online: October 31, 2022
  • Published Date: October 27, 2019
  • The cDNA sequence of the CyfaSTK gene (GenBank accession number:MH917915.1) was cloned from the flower bud of Cymbidium faberi Rolfe by homologous cloning. Results showed that the gene was 843 bp in length and the open reading frame (ORF) was 705 bp long, encoding a total of 234 amino acids and a stop codon. Molecular phylogenetic analysis and homologous protein comparison showed that the CyfaSTK protein belonged to the transcription factor STK-like evolution line of the AG subfamily of the D-class MADS-box gene family, which contained four distinct domains of MADS, I, K, and C terminal. The C terminal transcriptional activation region contained two conserved motifs:i.e., AG motifⅠ and AG motifⅡ. In addition, there was also a relatively conserved MD motif in Asparagales plants. Tissue specificity analysis showed that the C. faberi CyfaSTK gene was expressed in sepals, petals, lips, anther caps, gynostemia, and ovaries, but not in juvenile leaves. Expression of the C. faberi CyfaSTK gene in the ovary was significantly higher than that in other tissues. Among the dynamic changes in the flower bud at different developmental stages, the expression of CyfaSTK was the highest at the germination stage after dormancy and increased on the day of flowering. These results suggest that the D-class CyfaSTK gene not only regulates organ development in C. faberi, but also plays an important role in the normal development of the gynostemium and ovary.
  • [1]
    Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424(6944):85-88.
    [2]
    Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis[J]. Plant Cell, 2003, 15(11):2603-2611.
    [3]
    Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, et al. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis[J]. Dev Genes Evol, 2006, 216(6):301-313.
    [4]
    Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB. Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendro-bium thyrsiflorum (Reichb. f.)[J]. Gene, 2006, 366(2):266-274.
    [5]
    Liu ZX, Fei Y, Zhang KB, Fang ZW. Ectopic expression of a Fagopyrum esculentum APETALA1 ortholog only rescues sepal development in Arabidopsis ap1 mutant[J]. Int J Mol Sci, 2019, 20(8):1-12.
    [6]
    Riechmann JL, Krizek BA, Meyerowitz EM. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS[J]. Proc Natl Acad Sci USA, 1996, 93(10):4793-4798.
    [7]
    Yang Y, Jack T. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins[J]. Plant Mol Biol, 2004, 55(1):45-59.
    [8]
    Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE. Phylogeny and diversification of B-function MADS-box genes in angiosperms:evolutionary and functional implications of a 260-million-year-old duplication[J]. Am J Bot, 2004, 91(12):2102-2118.
    [9]
    Kramer EM, Jaramillo MA, Di Stilio VS. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms[J]. Genetics, 2004, 166(2):1011-1023.
    [10]
    Yun PY, Kim SY, Ochiai T, Fukuda T, Ito T, et al. AVAG2 is a putative D-class gene from an ornamental asparagus[J]. Sex Plant Reprod, 2004, 17(3):107-116.
    [11]
    Salemme M, Sica M, Gaudio L, Aceto S. The OitaAG and OitaSTK genes of the orchid Orchis italica:a comparative analysis with other C- and D-class MADS-box genes[J]. Mol Biol Rep, 2013, 40(5):3523-3535.
    [12]
    Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana[J]. Plant Cell Physiol, 2010, 51(6):1029-1045.
    [13]
    Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, et al. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynoste-mium and ovule development[J]. Plant Cell Physiol, 2012, 53(6):1053-1067.
    [14]
    Lopez DZP, Wittich P, Enrico PM, Rigola D, Del BI, et al. OsMADS13, a novel rice MADS-box gene expressed during ovule development[J]. Dev Genet, 1999, 25(3):237-244.
    [15]
    Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PB, et al. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice[J]. Plant J, 2007, 52(4):690-699.
    [16]
    Yu QY, Steiger D, Kramer EM, Moore PH, Ming R. Floral MADS-box genes in trioecious papaya:characterization of AG and AP1 subfamily genes revealed a sex-type-specific gene[J]. Tropical Plant Biol, 2008, 1(2):97-107.
    [17]
    Heijmans K, Ament K, Rijpkema AS, Zethof J, Wolters-Arts M, et al. Redefining C and D in the petunia ABC[J]. Plant Cell, 2012, 24(6):2305-2317.
    [18]
    Tsai WC, Hsiao YY, Pan ZJ, Kuoh CS, Chen WH, Chen HH. The role of ethylene in orchid ovule development[J]. Plant Sci, 2008, 175(1/2):98-105.
  • Related Articles

    [1]Li Li-Jun, Miao Ling-Feng, Li Da-Dong, Yang Fan. Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings[J]. Plant Science Journal, 2023, 41(3): 358-369. DOI: 10.11913/PSJ.2095-0837.22196
    [2]Guo Lu-Yao, Miao Ling-Feng, Li Da-Dong, Xiang Li-Shan, Yang Fan. Effects of nitrogen addition and warming on growth, development, and physiological characteristics of Dalbergia odorifera T. Chen seedlings[J]. Plant Science Journal, 2022, 40(2): 259-268. DOI: 10.11913/PSJ.2095-0837.2022.20259
    [3]Cai Yuan-Bao, Yang Xiang-Yan. Codon usage bias and its influencing factors in the chloroplast genome of Macadamia integrifolia Maiden & Betche[J]. Plant Science Journal, 2022, 40(2): 229-239. DOI: 10.11913/PSJ.2095-0837.2022.20229
    [4]Wang Yu-Chen, Wang Wen-Juan, Zhong Yue-Ming, Lei Shan-Qing, Li Jing-Wen. Study on the foraging behavior of clonal roots and its influencing factors in Populus euphratica Oliv.[J]. Plant Science Journal, 2020, 38(3): 410-417. DOI: 10.11913/PSJ.2095-0837.2020.30410
    [5]Pu Yu-Jin, Zhang Li-Jia, Miao Ling-Feng, Yang Fan. Effects of different calcium concentrations on the growth and physiological characteristics of Dalbergia odorifera under low temperatures[J]. Plant Science Journal, 2019, 37(2): 251-259. DOI: 10.11913/PSJ.2095-0837.2019.20251
    [6]Wang Yue-Lin, Xu Da-Ping, Yang Zeng-Jiang, Liu Xiao-Jin, Hong Zhou, Zhang Ning-Nan. Effects of transplantation and potassium fertilizer on the photosynthetic characteristics and chlorophyll content of Dalbergia odorifera[J]. Plant Science Journal, 2018, 36(6): 879-887. DOI: 10.11913/PSJ.2095-0837.2018.60879
    [7]ZHU Xia-Xia, ZHANG Hua, ZHU Yan, LIU Jian-Gang, ZHU Ye-Ping, LÜ Rui, WANG Ying, MA Ming-Jun. Forest Community Species Diversity and the Influencing Factors in the Rock Stream Periglacial Landforms of Mt. Laotudingzi[J]. Plant Science Journal, 2016, 34(1): 67-77. DOI: 10.11913/PSJ.2095-0837.2016.10067
    [8]YANG Qi-He, YE Wan-Hui, LIAO Fu-Lin, LIU Zhi-Wei, YIN Xiao-Juan. Experimental Factors Affecting Studying Characteristics of Seed Storage[J]. Plant Science Journal, 2006, 24(5): 469-475.
    [9]HUANG Xuan, XU Zi-Qin, HAO Jian-Guo, LI Jing. Factors Affecting Wheat(Triticum aestivum L.)Transformation Mediated by Biolistic Bombardment[J]. Plant Science Journal, 2004, 22(2): 111-115.
    [10]Zhang Youde, Zhang Junzhi, Mei Fangzhu, Zhou Daming, Hu Delin, Wang Yuanfu. THE TILLERING RULE ON EULALIOPSlS BINATA AND ITS CONTROLLING FACTORS[J]. Plant Science Journal, 1993, 11(2): 185-192.
  • Cited by

    Periodical cited type(6)

    1. Hui Wang,Jiping Zhang,Benyong Wei,Qing Qiao,Wentao Zhang,Yangcui Ning,Chunlan Liu. The effects of climate change on Pinus tabulaeformis radial growth in the Xiaowutai Mountains, northern China. Journal of Forestry Research. 2025(01): 115-125 .
    2. 常素玲. 山西省关帝山林区油松径向生长对气候的响应. 山西林业科技. 2024(01): 24-27 .
    3. 韦晓旭,彭剑峰,彭猛,李轩,崔佳月,李金宽,魏亚飞. 中国南北过渡带油松径向生长对气候因子的响应研究——以鸡公山国家级自然保护区为例. 地理科学. 2024(09): 1643-1652 .
    4. 李镇江,于晨一,刘升云,闫瑞环,黄心邓,刘晓静,陈志成,王婷. 伏牛山南坡3种针叶树径向生长对气候变化的响应. 应用生态学报. 2023(05): 1178-1186 .
    5. 李夏榕,陈怡歆,陈静飞,朱济友,孙广鹏,韦柳端,张新娜,徐程扬. 气候变化对北京近远郊地区油松径向生长影响的比较研究. 北京林业大学学报. 2022(01): 19-28 .
    6. 乔梁,陈雪,高梦竹,王子洋. 气候旅游资源-植被观赏气象指数研究. 黑龙江气象. 2022(03): 18-21 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return