Citation: | Zhao Wan-Li, Zhang Jiao-Lin, Zhang Yong-Jiang, Cao Kun-Fang. Analysis of photosynthesis-water relationship between simple- and compound-leafed leguminous trees[J]. Plant Science Journal, 2019, 37(5): 628-636. DOI: 10.11913/PSJ.2095-0837.2019.50628 |
[1] |
Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg L. Dynamic changes in hydraulic conductivity in pe-tioles of two savanna tree species:factors and mechanisms contributing to the refilling of embolized vessels[J]. Plant Cell Environ, 2003, 26(10):1633-1645.
|
[2] |
Xiong D, Douthe C, Flexas J. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species[J]. Plant Cell Environ, 2018, 41(2):436-450.
|
[3] |
Brodribb TJ, Skelton RP, Mcadam SA, Bienaimé D, Lucani CJ, Marmottant P. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure[J]. New Phytol, 2016, 209(4):1403-1409.
|
[4] |
Anderegg WRL, Kane JM, Anderegg LDL. Consequences of wide-spread tree mortality triggered by drought and temperature stress[J]. Nat Clim Change, 2013, 3(1):30-36.
|
[5] |
Zhang YJ, Meinzer FC, Qi JH, Goldstein G, Cao KF. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees[J]. Plant Cell Environ, 2013, 36(1):149-158.
|
[6] |
Conklin PA, Strable J, Li S, Scanlon MJ. On the mechanisms of development in monocot and eudicot leaves[J]. New Phytol, 2019, 221(2):706-724.
|
[7] |
Efroni I, Eshed Y, Lifschitz E. Morphogenesis of simple and compound leaves:a critical review[J]. Plant Cell, 2010, 22(4):1019-1032.
|
[8] |
Sinha N. Simple and compound leaves:reduction or multiplication?[J]. Trends Plant Sci,1997, 2(10):396-402.
|
[9] |
Bar M, Ori N. Compound leaf development in model plant species[J]. Curr Opin Plant Biol, 2015, 23:61-69.
|
[10] |
Gurevitch J, Schuepp PH. Boundary layer properties of highly dissected leaves:an investigation using an electrochemical fluid tunnel[J]. Plant Cell Environ, 1990, 13(8):783-792.
|
[11] |
Lechuga V, Carraro V, Vinegla B, Antonio Carreira J, Carlos Linares J. Managing drought-sensitive forests under global change. Low competition enhances long-term growth and water uptake in Abies pinsapo[J]. For Ecol Manage, 2017, 406:72-82.
|
[12] |
Koutroulis AG. Dryland changes under different levels of global warming[J]. Sci Total Environ, 2019, 655:482-511.
|
[13] |
Gonzalez-Zeas D, Erazo B, Lloret P, de Bievre B, Steinschneider S, Dangles O. Linking global climate change to local water availability:Limitations and prospects for a tropical mountain watershed[J]. Sci Total Environment, 2019, 650:2577-2586.
|
[14] |
Ikeuchi M, Igarashi H, Okada K, Tsukaya H. Acropetal leaflet initiation of Eschscholzia californica is achieved by constant spacing of leaflets and differential growth of leaf[J]. Planta, 2014, 240(1):125-135.
|
[15] |
Liu YY, Song J, Wang M, Li N, Niu CY, Hao GY. Coordination of xylem hydraulics and stomatal regulation in kee-ping the integrity of xylem water transport in shoots of two compound-leaved tree species[J]. Tree Physiol, 2015, 35(12):1333-1342.
|
[16] |
Zhao WL, Siddiq Z, Fu PL, Zhang JL, Cao KF. Stable stomatal number per minor vein length indicates the coordination between leaf water supply and demand in three leguminous species[J]. Sci Rep, 2017, 7:2211.
|
[17] |
Song J, Yang D, Niu CY, Zhang WW, Wang M, Hao GY. Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China[J]. For Ecol Manage, 2018, 418:63-72.
|
[18] |
Tyree MT, Sperry JS. Vulnerability to cavitation and embolism[J]. Plant Physiol, 1989, 40:19-38.
|
[19] |
Chen YJ, Schnitzer SA, Zhang YJ, Fan ZX, Goldstein G, et al. Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas[J]. Functional Ecol, 2017, 31(2):306-317.
|
[20] |
Yang D, Goldstein G, Wang M, Zhang WW, Wang AY, et al. Microenvironment in the canopy rivals the host tree water status in controlling sap flow of a mistletoe species[J]. Tree Physiol, 2017, 37(4):501-510.
|
[21] |
Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S. Embolism resistance as a key mechanism to understand adaptive plant strategies[J]. Curr Opin Plant Biol, 2013, 16(3):287-292.
|
[22] |
Scholz FG, Bucci SJ, Goldstein G. Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts:a comparison with the co-occurring Austrocedrus chilensis[J]. Trees, 2014, 28(5):1475-1487.
|
[23] |
Zolfaghar S, Villalobos-Vega R, Cleverly J, Eamus D. Co-ordination among leaf water relations and xylem vulnerabi-lity to embolism of Eucalyptus trees growing along a depth-to-groundwater gradient[J]. Tree physiol, 2015, 35(7):732-743.
|
[24] |
Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody-plants[J]. New Phytol, 1991, 119(3):345-360.
|
[25] |
Cochard H, Coll L, Le Roux X, Améglio T. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut[J]. Plant physiol, 2002, 128(1):282-290.
|
[26] |
Tyree MT, Sperry JS. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dyna-mic water stress? Answers from a model[J]. Plant Physiol, 1988, 88(3):574-580.
|
[27] |
Schneider JV, Habersetzer J, Rabenstein R, Wesenberg J, Wesche K, Zizka G. Water supply and demand remain coordinated during breakdown of the global scaling relationship between leaf size and major vein density[J]. New Phytol, 2017, 214(1):473-486.
|
[28] |
Scoffoni C, Chatelet DS, Pasquet-kok J, Rawls M, Donoghue MJ, et al. Hydraulic basis for the evolution of photosynthetic productivity[J]. Nat Plants, 2016, 2(6):16072.
|
[29] |
Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR. Xylem hydraulic safety margins in woody plants:coordination of stomatal control of xylem tension with hydraulic capacitance[J]. Funct Ecol, 2009, 23(5):922-930.
|
[30] |
Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez-Castillo M, et al. Hydraulic differences along the water transport system of South American Nothofagus species:do leaves protect the stem functionality?[J]. Tree Phy-siol, 2012, 32(7):880-893.
|
[31] |
Zhang WW, Wang M, Wang AY, Yin XH, Feng ZZ, Hao GY. Elevated ozone concentration decreases whole-plant hydraulic conductance and disturbs water use regulation in soybean plants[J]. Physiol Plant, 2018, 163(2):183-195.
|
[32] |
Scoffoni C, Albuquerque C, Cochard H, Buckley TN, Fletcher LR, Caringella MA, et al. The causes of leaf hydraulic vulnerability and its influence on gas exchange in Arabidopsis thaliana[J]. Plant Physiol, 2018, 178(4):1584-1601.
|
[33] |
Cirocco RM, Facelli JM, Watling JR. High water availability increases the negative impact of a native hemiparasite on its non-native host[J]. J Exp Bot, 2016, 67(5):1567-1575.
|
[34] |
Champagne CE, Goliber TE, Wojciechowski MF, Mei RW, Townsley BT, et al. Compound leaf development and evolution in the legumes[J]. Plant Cell, 2007, 19:3369-3378.
|
[35] |
中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京:科学出版社, 1993.
|
[36] |
Chen JW, Zhang Q, Li XS, Cao KF. Gas exchange and hydraulics in seedlings of Heveabrasiliensis during water stress and recovery[J]. Tree Physiol, 2010, 30(7):876-885.
|
[37] |
Champagne C, Sinha N. Compound leaves:equal to the sum of their parts?[J] Development, 2004, 131(18):4401-4412.
|
[38] |
Wang Q, Song Z, Chen Y, Shen S, Li Z. Leaves and fruits of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the Oligocene Ningming Formation of Guangxi, south China and their biogeographic implications[J]. BMC Evol Biol, 2014, 14:88.
|
[39] |
Brodribb TJ, Cochard H. Hydraulic failure defines the recovery and point of death in water-stressed conifers[J]. Plant Physiol, 2009, 149(1):575-584.
|
[40] |
Koch GW, Amthor JS, Goulden ML. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rainforest in Cameroon:Measurements from the Radeu des Cimes[J]. Tree Physiol, 1994, 14(4):347-360.
|
[41] |
Tucci MLS, Erismann NM, Machado EC, Ribeiro R. Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions[J]. Photosynthetica, 2010, 48(3):421-429.
|
[42] |
Sack L, Dietrich EM, Streeter CM, Sanchez-Gomez D, Holbrook NM. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption[J]. Proc Nat Acad Sci USA, 2008, 105(5):1567-1572.
|
[1] | Wang Yang, Sun Zhenting, Hu Tao, Li Jitao. Identification and expression analysis of VQ family genes in Lolium perenne L.[J]. Plant Science Journal, 2024, 42(1): 48-55. DOI: 10.11913/PSJ.2095-0837.23072 |
[2] | Liu Xiao-Fei, Gan Jin-Xin, Zhou Tao, Zhang Fu-Zhong, Liu Ning-Fang, Lu Rui, Hu Long-Xing, Xu Qian. Bioinformatics analysis of the MTP gene family in Amaranthus hypochondriacus L. and expression characteristics under cadmium stress[J]. Plant Science Journal, 2023, 41(4): 467-478. DOI: 10.11913/PSJ.2095-0837.22279 |
[3] | Li Jia-Qi, Luo Shi-Lei, Zhang Shuai-Lei, Zhang Wen-Yuan, Zhang Guo-Bin. Genome-wide identification of pepper OSCA gene family and expression analysis under different stress conditions[J]. Plant Science Journal, 2022, 40(2): 187-196. DOI: 10.11913/PSJ.2095-0837.2022.20187 |
[4] | Li Fang, Teng Jian-Shai, Chen Xuan-Qin. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Science Journal, 2018, 36(3): 459-469. DOI: 10.11913/PSJ.2095-0837.2018.30459 |
[5] | Li Hong-You, Chen Qing-Fu. Advances on the role of heterotrimeric G proteins in plant abiotic stress responses[J]. Plant Science Journal, 2018, 36(1): 144-151. DOI: 10.11913/PSJ.2095-0837.2018.10144 |
[6] | XIAO Zhen, ZHAO Qi, ZHANG Chuan-Fang, WANG Xiao-Li, WANG Quan-Hua, DAI Shao-Jun. Abiotic Stress Response Mechanism of Oilseed Rape (Brassica napus L.) Revealed from Proteomics[J]. Plant Science Journal, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949 |
[7] | WANG Qiu-Li, YANG Yun-Qiang, YANG Yong-Ping. Molecular Cloning, Sequence Analyses, and Functional Identification the of WRKY53 Gene in Stipa purpurea[J]. Plant Science Journal, 2016, 34(6): 879-887. DOI: 10.11913/PSJ.2095-0837.2016.60879 |
[8] | ZHANG Zhi-Fei, YANG Zhi-Jian, ZHOU Qian, ZHAO Zhi-Li. Advanced Study on Gene Expression Regulatory Mechanisms of DREB2s Transcription Factor Gene[J]. Plant Science Journal, 2014, 32(3): 297-303. DOI: 10.3724/SP.J.1142.2014.30297 |
[9] | YANG Rong-Chao, CAI Yu-Jing, DENG Chun-Ting, OUYANG Bo, YE Zhi-Biao. Cloning of Two Salt-responsive Genes and Their Expression Analysis in Tomato[J]. Plant Science Journal, 2011, 29(2): 178-182. |
[10] | LI Ming-Hui, SUN Ying, ZHAO Chun-Mei, SUN Ai-Qing, HU Xiao-Ran, LIU Jian. Cloning and Stress Expression Analysis of Calnexin in Tomato[J]. Plant Science Journal, 2006, 24(2): 100-105. |