Advance Search
Zhang Wei, He Cheng-Bin, Gong Yan-Bing. Pollinator attraction and outcrossing strategies in Iris[J]. Plant Science Journal, 2019, 37(5): 672-681. DOI: 10.11913/PSJ.2095-0837.2019.50672
Citation: Zhang Wei, He Cheng-Bin, Gong Yan-Bing. Pollinator attraction and outcrossing strategies in Iris[J]. Plant Science Journal, 2019, 37(5): 672-681. DOI: 10.11913/PSJ.2095-0837.2019.50672

Pollinator attraction and outcrossing strategies in Iris

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31670228).

More Information
  • Received Date: March 19, 2019
  • Available Online: October 31, 2022
  • Published Date: October 27, 2019
  • Iris comprises approximately 280 species with variable floral traits, which makes it an ideal genus for scientific and horticultural research. Although some irises are capable of selfing and clonal reproduction, pollinator-mediated outcrossing still plays an important role in species maintenance and genetic diversity. However, pollinator attraction and outcrossing strategies in Iris have yet to be systematically summarized. In this paper, we describe the pollinator diversity and floral architecture adaptations for animal pollination in irises. On this basis, we introduce how visual and olfactory signals and floral rewards (eg., pollen, nectar, and heat) are presented in Iris to attract pollinators. Before and after pollinator visitation, Iris plants can promote outcrossing by regulating their floral display, spatiotemporal isolation of male and female functions, and post-pollination processes. Furthermore, third-party factors like florivores and resource allocations need to be considered in studies on pollinator attraction and outcrossing in Iris. Future research should focus on hot or controversial issues with the use of advanced techniques like quantitative measurement of floral signals and molecular detection of outcrossing rates, and on large-scale comparison of the modes of plant-pollinator interactions and outcrossing strategies in Iris species.
  • [1]
    Mathew B. The Iris[M]. New York:Universe Books, 1981.
    [2]
    胡永红, 肖月娥. 湿生鸢尾:品种赏析、栽培及应用[M]. 北京:科学出版社, 2012:24-25.
    [3]
    赵毓棠. 中国植物志:第16卷[M]. 北京:科学出版社, 1985:133.
    [4]
    Stebbins GL. Adaptive radiation of reproductive characte-ristics in angiospermsⅠ:pollination mechanisms[J]. Annu Rev Sociol, 1970, 1(1):307-26.
    [5]
    Gong YB, Huang SQ. Floral symmetry:pollinator-mediated stabilizing selection on flower size in bilateral species[J]. Proc R Soc B-Biol Sci, 2009, 276(1675):4013-4020.
    [6]
    Gong YB, Huang SQ. Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits[J]. Oecologia, 2011, 166(3):671-680.
    [7]
    黄双全. 花部特征演化的最有效传粉者原则:证据与疑问[J]. 生命科学, 2014, 26(2):118-124.

    Huang SQ. Most effective pollinator principle of floral evolution:evidence and query[J]. Chinese Bulletin of Life Sciences, 2014, 26(2):118-124.
    [8]
    张大勇. 植物生活史进化与繁殖生态学[M]. 北京:科学出版社, 2004:107-115.
    [9]
    Xiao YE, Jin DM, Jiang K, Hu YH, Tong X, et al. Pollinator limitation causes sexual reproductive failure in ex situ populations of self-compatible Iris ensata[J]. Plant Ecol Divers, 2019. doi: https://doi.org/10.1080/17550874.
    [10]
    Shemesh H, Shani G, Carmel Y, Kent R, Sapir Y. To mix or not to mix the sources of relocated plants? The case of the endangered Iris lortetii[J]. J Nat Conserv,2018,45:41-47.
    [11]
    卢继承. 鸢尾的染色体核型分析[J]. 山东师范大学学报(自然科学版), 2000, 15(2):214-216.

    Lu JC. A study of karyotype of Iris tectorum[J]. Journal of Shandong Normal University (Natural Science), 2000, 15(2):214-216.
    [12]
    Ioana C, Roxana V, Oltean I, Stoie A, Stoian V. Iris spp. Flower visitors:Pollinators vs. nectar thieves[J]. Romanian Journal of Grassland and Forage Crops, 2018, 17:11-20.
    [13]
    肖月娥. 东亚间断分布植物玉蝉花(Iris ensata)亲缘地理学研究及传粉互作对其后缘种群维持的作用[D]. 上海:华东师范大学, 2014:96-106.
    [14]
    Wesselingh RA, Arnold ML. Nectar production in Louisiana iris hybrids[J]. Int J Plant Sci, 2000, 161(2):245-251.
    [15]
    Kron P, Stewart SC, Back A. Self-compatibility, autonomous self-pollination, and insect-mediated pollination in the clonal species, Iris versicolor[J]. Can J Bot, 1993, 71(11):1503-1509.
    [16]
    Ishii HS, Morinaga SI. Intra- and inter-plant level correlations among floral traits in Iris gracilipes (Iridaceae)[J]. Evol Ecol, 2005, 19(5):435-448.
    [17]
    Watts S, Sapir Y, Segal B, Dafni A. The endangered Iris atropurpurea (Iridaceae) in Israel:honey-bees, night-sheltering male bees and female solitary bees as pollinators[J]. Ann Bot, 2013, 111(3):395-407.
    [18]
    Barrett SCH, Harder LD. Ecology and evolution of plant mating[J]. Trends Ecol Evol, 1996, 11(2):73-79.
    [19]
    Burke JM, Bulger MR, Wesselingh RA, Arnold ML. Frequency and spatial patterning of clonal reproduction in Louisiana iris hybrid populations[J]. Evolution, 2000, 54(1):137-144.
    [20]
    Tarasjev A. Impact of genet size and flowering stage on fruit set in Iris pumila L. clones in wild[J]. Acta Oecol, 2005, 27(2):93-98.
    [21]
    Lavi R, Sapir Y. Are pollinators the agents of selection for the extreme large size and dark color in Oncocyclus irises?[J]. New Phytol, 2015, 205(1):369-377.
    [22]
    Morinaga SI, Sakai S. Functional differentiation in pollination processes between the outer and inner perianths in Iris gracilipes (Iridaceae)[J]. Can J Bot, 2006, 84(1):164-171.
    [23]
    Faegri K, Pilj LVD. The Principles of Pollination Ecology[M]. 3rd ed. Oxford:Pergamon Press, 1979:207-225.
    [24]
    Wesselingh RA, Arnold ML. Pollinator behaviour and the evolution of Louisiana iris hybrid zones[J]. J Evol Biol, 2000, 13:171-180.
    [25]
    Smithson A, Macnair MR. Negative frequency-dependent selection by pollinators on artificial flowers without rewards[J]. Evolution, 1997, 51(3):715-723.
    [26]
    Imbert E, Wang H, Anderson B, Hervouet B, Talavera M, Schatz B. Reproductive biology and colour polymorphism in the food-deceptive Iris lutescens (Iridaceae)[J]. Acta Bot Gall, 2014, 161(2):117-127.
    [27]
    Imbert E, Wang H, Conchou L, Vincent H, Talavera M, Schatz B. Positive effect of the yellow morph on female reproductive success in the flower colour polymorphic Iris lutescens (Iridaceae), a deceptive species[J]. J Evol Biol, 2014, 27(9):1965-1974.
    [28]
    Wang H, Talavera M, Min Y, Flaven E, Imbert E. Neutral processes contribute to patterns of spatial variation for flower colour in the Mediterranean Iris lutescens (Iridaceae)[J]. Ann Bot, 2016, 117(6):995-1007.
    [29]
    Pellegrino G, Bellusci F, Palermo AM. Who helps whom? Pollination strategy of Iris tuberosa and its relationship with a sexually deceptive orchid[J]. J Plant Res, 2016, 129:1051-1059.
    [30]
    Monty A, Saad L, Mahy G. Bimodal pollination system in rare endemic Oncocyclus irises (Iridaceae) of Lebanon[J]. Can J Bot, 2006, 84(8):1327-1338.
    [31]
    尚方剑, 王玲. 溪荪开花及传粉生物学特性[J]. 草业科学, 2014, 31(5):892-897.

    Shang FJ, Wang L. Biological characteristics of flowering and pollination of Iris sanguinea[J]. Pratacultural Science, 2014, 31(5):892-897.
    [32]
    Ye ZM, Jin XF, Wang QF, Yang CF, Inouye DW. Pollinators shift to nectar robbers when florivory occurs, with effects on reproductive success in Iris bulleyana (Iridaceae)[J]. Plant Biol, 2017, 19:760-766.
    [33]
    Zhu YR, Yang M, Vamosi JC, Armbruster WS, Wan T, Gong YB. Feeding the enemy:loss of nectar and nectaries to herbivores reduces tepal damage and increases pollinator attraction in Iris bulleyana[J]. Biol Lett, 2017, 13(8):20170271.
    [34]
    Uno GE. The influence of pollinators on the breeding system of Iris douglasiana[J]. Am Midl Nat, 1982, 108(1):149-158.
    [35]
    Rudall PJ, Manning JC, Goldblatt P. Evolution of floral nectaries in Iridaceae[J]. Ann Mo Bot Gard, 2003, 90(4):613-631.
    [36]
    余小芳, 张海琴, 何雪梅, 谢全, 周永红. 鸢尾属12种(变种)植物花粉形态及其系统学意义[J]. 园艺学报, 2010, 37(7):1175-1182.

    Yu XF, Zhang HQ, He XM, Xie Q, Zhou YH. Pollen morphology of 12 species of Iris L. and its systematic significations[J]. Acta Horticulturae Sinica, 2010, 37(7):1175-1182.
    [37]
    Uno GE. Comparative reproductive biology of hermaphroditic and male-sterile Iris douglasiana Herb (Iridaceae)[J]. Am J Bot, 1982, 69(5):818-823.
    [38]
    Avishai M. Species relationships and cytogenetic affinities in section Oncocyclus of the genus Iris[D]. Jerusalem:Hebrew University,1977(Unpublished).
    [39]
    Sapir Y, Shmida A, Ne'eman G. Pollination of Oncocyclus irises (Iris:Iridaceae) by night-sheltering male bees[J]. Plant Biol, 2005, 7(4):417-424.
    [40]
    Sapir Y, Shmida A, Ne'eman G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises[J]. Oecologia, 2006, 147(1):53-59.
    [41]
    Hu Y, Barrett SCH, Zhang DY, Liao WJ. Experimental analysis of mating patterns in a clonal plant reveals contrasting modes of self-pollination[J]. Ecol Evol, 2005, 5(22):5423-5431.
    [42]
    张玉芬, 张大勇. 克隆植物的无性与有性繁殖对策[J]. 植物生态学报, 2006, 30(1):174-183.

    Zhang YF, Zhang DY. A sexual and sexual reproductive strategies in clonal plants[J]. Journal of Plant Ecology, 2006, 30(1):174-183.
    [43]
    Cruzan MB, Hamrick JL, Arnold ML, Bennett BD. Mating system variation in hybridizing irises:Effects of phenology and floral densities on family outcrossing rates[J]. Heredity, 1994, 72(2):95-105.
    [44]
    Ishii HS, Sakai S. Implications of geitonogamous pollination for floral longevity in Iris gracilipes[J]. Funct Ecol, 2001, 15(5):633-641.
    [45]
    Kimura T, Ishii HS, Sakai S. Selfed-seed production depending on individual size and flowering sequence in Iris gracilipes (Iridaceae)[J]. Can J Bot, 2002, 80(10):1096-1102.
    [46]
    Back AJ, Kron P, Stewart SC. Phenological regulation of opportunities for within-inflorescence geitonogamy in the clonal species, Iris versicolor (Iridaceae)[J]. Am J Bot, 1996, 83(8):1033-1040.
    [47]
    Segal B, Sapir Y, Carmel Y. Fragmentation and pollination crisis in the self-incompatible Iris bismarckiana (Irida-ceae), with implications for conservation[J]. Isr J Ecol Evol, 2006, 52(2):111-122.
    [48]
    Barrett SCH. The evolution of mating strategies in flowering plants[J]. Trends Ecol Evol, 1998, 18(12):335-341.
    [49]
    许玉凤, 韩静, 海风, 宋哲, 何菲菲. 鸢尾属植物花粉活力和柱头可授性的研究[J]. 北方园艺, 2010(16):129-131.

    Xu YF, Han J, Hai F, Song Z, He FF. Study on stigma receptivity and pollen viability of Iris[J]. Northern Horticulture, 2010(16):129-131.
    [50]
    马玉梅, 张云, 秦景逸, 王秀梅, 朱甜甜. 膜苞鸢尾花粉形态、活力与柱头可授性研究[J]. 新疆农业科学, 2017, 54(1):110-116.

    Ma YM, Zhang Y, Qin JY, Wang XM, Zhu TT. Pollen morphology, viability and stigma receptivity of Iris scariosa Willd[J]. Xinjiang Agricultural Sciences, 2017, 54(1):110-116.
    [51]
    刘宗才, 焦铸锦, 董旭升, 代金星. 鸢尾的花部结构及繁育系统特征[J]. 园艺学报, 2011, 38(7):1333-1340.

    Liu ZC, Jiao ZJ, Dong XS, Dai JX. Floral syndrome and breeding system of Iris tectorum[J]. Acta Horticulturae Sinica, 2011, 38(7):1333-1340.
    [52]
    马玉梅, 张云, 秦景逸, 王秀梅, 朱甜甜. 膜苞鸢尾的开花特性及繁育系统[J]. 东北林业大学学报, 2017, 45(3):44-47.

    Ma YM, Zhang Y, Qin JY, Wang XM, Zhu TT. Characte-ristics of flowering and breeding systems of Iris scariosa[J]. Journal of Northeast Forestry University, 2017, 45(3):44-47.
    [53]
    关文灵, 李叶芳, 陈贤, 杨德. 蝴蝶花花器结构和开花授粉生物学特性[J]. 园艺学报, 2009, 36(10):1485-1490.

    Guan WL, Li YF, Chen X, Yang D. Flower structure and biological characteristics of flowering and pollination in Iris japonica Thunb[J]. Acta Horticulturae Sinica, 2009, 36(10):1485-1490.
    [54]
    方瑾. 植物的生殖讲座(五):被子植物的自交不亲和性[J]. 生物学通报, 1996, 31(7):28-30.

    Fang J. Lecture on plant reproduction (5):self-incompatibility of angiosperms[J]. Bulletin of Biology, 1996, 31(7):28-30.
    [55]
    Pellegrino G. Pollinator limitation on reproductive success in Iris tuberosa[J]. AoB Plants, 2015, 7:89.
    [56]
    McCall AC, Irwin RE. Florivory:the intersection of pollination and herbivory[J]. Ecol Lett, 2006, 9(12):1351-1365.
    [57]
    Strauss SY, Whittall JB. Non-pollinator agents of selection on floral traits[M]//Harder LD, Barrett SCH, eds. Ecology and Evolution of Flowers. Oxford:Oxford University Press, 2006:120-138.
    [58]
    Singh VK, Barman C, Tandon R. Nectar robbing positively influences the reproductive success of Tecomella undulata (Bignoniaceae)[J]. PLoS One, 2014, 9(7):e102607.
    [59]
    Ghara M, Ewerhardy C, Yardeni G, Matzliach M, Sapir Y. Does floral herbivory reduce pollination-mediated fitness in shelter rewarding Royal Irises?[J]. BioRxiv, 2017. doi: http://dx.doi.org/10.1101/184382.
    [60]
    Sapir Y, Ghara M. The (relative) importance of pollinator-mediated selection for evolution of flowers[J]. Am J Bot, 2017, 104(12):1787-1789.
    [61]
    Sapir Y, Shmida AVI, Fragman ORI, Comes HP. Morphological variation of the Oncocyclus irises (Iris:Iridaceae) in the southern Levant[J]. Bot J Linnean Soc, 2002, 139(4):369-382.
    [62]
    Zandt PAV, Mopper S. Delayed and carryover effects of salinity on flowering in Iris hexagona (Iridaceae)[J]. Am J Bot, 2002, 89(11):1847-1851.
    [63]
    Ollerton J. Pollinator diversity:distribution, ecological function, and conservation[J]. Annu Rev Sociol, 2017, 48(1):353-376.
    [64]
    Yang M, Deng GC, Gong YB, Huang SQ. Nectar yeasts enhance the interaction between Clematis akebioides and its bumblebee pollinator[J]. Plant Biol, 2019. doi: 10.1111/plb.12957.
    [65]
    朱亚如, 龚燕兵. 风媒传粉的研究方法探讨[J]. 生物多样性, 2017, 25(8):864-873.

    Zhu YR, Gong YB. Methods of wind pollination[J]. Biodiversity Science, 2017, 25(8):864-873.
    [66]
    Dai C, Luo WJ, Gong YB, Liu F, Wang ZX. Resource reallocation patterns within Sagittaria trifolia inflorescences following differential pollination[J]. Am J Bot, 2018, 105(4):803-811.
    [67]
    Ramos SE, Schiestl FP. Rapid plant evolution driven by the interaction of pollination and herbivory[J]. Science, 2019, 364(6436):193-196.
  • Related Articles

    [1]Lei Ming, Zhao Zhi-Qiang, Chen Wen-Shuai, Wang Xi-Long. Bulbophyllum sonii Aver. & N.V. Duy, a new record of Orchidaceae from China[J]. Plant Science Journal, 2022, 40(3): 310-314. DOI: 10.11913/PSJ.2095-0837.2022.30310
    [2]Wang Jun-Jie, Cheng Yue-Hong, Ding Shi-Xiong, Wang Yan, Peng Shuai, Yang Jia-Xin, Sun Hong-Ou, Leng Zhi-Cheng, Hu Guang-Wan. Six new records of Orchidaceae in Sichuan Province[J]. Plant Science Journal, 2021, 39(3): 223-228. DOI: 10.11913/PSJ.2095-0837.2021.30223
    [3]Liu Fei-Hu, Huang Lang, Liu Huan, Tan Shao-Lin, Luo Huo-Lin, Yang Bo-Yun. Flora of Orchidaceae in Luoxiao Mountains and its ecogeographical characteristics[J]. Plant Science Journal, 2020, 38(4): 467-475. DOI: 10.11913/PSJ.2095-0837.2020.40467
    [4]Chen Li-Jun, Zhou Hong-Bo, Liu Zhong-Jian, Zheng Fang, Wang Yu, Rao Wen-Hui. Cymbidium×malipoense, a new hybrid of Orchidaceae from Yunnan, China[J]. Plant Science Journal, 2020, 38(2): 181-184. DOI: 10.11913/PSJ.2095-0837.2020.20181
    [5]DENG Xiao-Xiang, CHEN Yi-Ke, RAO Wen-Hui, CHEN Li-Jun. Dendrobium luoi, a New Species of Orchidaceae from China[J]. Plant Science Journal, 2016, 34(1): 9-12. DOI: 10.11913/PSJ.2095-0837.2016.10009
    [6]CHEN Li-Jun, LIU Zhong-Jian. Apostasia shenzhenica,A New Species of Apostasioideae(Orchidaceae) from China[J]. Plant Science Journal, 2011, 29(1): 38-41.
    [7]WANG Yi, WANG Yan. Habenaria anomaliflora,a New Record of Orchidaceae from China[J]. Plant Science Journal, 2010, 28(6): 696-697.
    [8]CHEN Li-Jun, LIU Zhong-Jian. Dendrobium moniliforme var.malipoense,A New Variety of Orchidaceae from China[J]. Plant Science Journal, 2008, 26(4): 357-360.
    [9]CHEN Li-Jun, RAO Wen-Hui. The Occurrence of Habenaria leptoloba(Orchidaceae) in Guangdong[J]. Plant Science Journal, 2008, 26(3): 255-258.
    [10]Chen Hengbin, Chang Yongtian. A NEW RECORDED GENUS OF FAMILY ORCHIDACEAE FROM CHINA──STIGMATODACTYLUS[J]. Plant Science Journal, 1994, 12(4): 324-326.
  • Cited by

    Periodical cited type(6)

    1. 黄文俊,王周倩,张琦,杨洁,申素云,钟彩虹. ‘金圆’猕猴桃在两个地区果实生长发育动态变化研究. 植物科学学报. 2023(04): 531-539 . 本站查看
    2. 胡娟,陈梦军,杨永奎,邱炼,李显航,王旭莲. 黔西北山区不同配方施肥对猕猴桃产量的影响. 农技服务. 2021(01): 40-42 .
    3. 夏文娟,郑丽,孙雷明,徐绳武,施仕胜,柯金贤,余安安. 中国猕猴桃杂交育种现状与展望. 湖北农业科学. 2021(21): 12-15 .
    4. 涂贵庆,廖光联,刘青,李帮明,黄春辉,贾东峰,赵尚高,徐小彪. 中华猕猴桃黄肉新品种“奉黄1号”的生物学特性及其主要栽培技术. 中国南方果树. 2020(02): 153-156 .
    5. 黄文俊,江昌应,陈美艳,刘小莉,张琦,闫春林,钟彩虹. 三个产地猕猴桃品种‘金梅’在低温贮藏及货架期内的采后生理和品质变化. 植物科学学报. 2020(05): 687-695 . 本站查看
    6. 陈镇,李秀丽,陈志伟,乐有章,翟敬华,张鸿,戢小梅. 中国猕猴桃育种及品种选育研究. 湖北农业科学. 2019(S2): 300-307+312 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return