Citation: | Qi Tong-Hui, Gao Meng, Yuan Yang-Yang, Li Ming-Jun, Ma Feng-Wang, Ma Bai-Quan. Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh[J]. Plant Science Journal, 2019, 37(6): 767-774. DOI: 10.11913/PSJ.2095-0837.2019.60767 |
[1] |
王皎, 李赫宇, 刘岱琳. 苹果的营养成分及保健功效研究进展[J].食品研究与开发, 2011, 32(1):164-169.
Wang J, Li HY, Liu DL. Research progress of apple nutrition components and health function[J]. Food Research and Development, 2011, 32(1):164-169.
|
[2] |
马百全. 苹果资源果实糖酸性状评估及酸度性状的候选基因关联分析[D]. 武汉:中国科学院武汉植物园, 2016.
|
[3] |
Ma BQ, Chen J, Zheng HY, Fang T, Collins O, et al. Comparative assessment of sugar and malic acid composition in cultivated and wild apples[J]. Food Chem, 2015, 172:86-91.
|
[4] |
Ma BQ, Yuan YY, Gao M, Li CY, Collins O, et al. Determination of predominant organic acid components in Malus species:correlation with apple domestication[J]. Metabolites, 2018, 8(4):74.
|
[5] |
Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, et al. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers[J]. Theor Appl Genet, 1998, 97(1-2):60-73.
|
[6] |
Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C. Mapping quantitative physiological traits in apple (Malus×domestica Borkh.)[J]. Plant Mol Biol, 2003, 52(3):511-526.
|
[7] |
Kenis K, Keulemans J, Davey MW. Identification and stability of QTLs for fruit quality traits in apple[J]. Tree Genet Genomes, 2008, 4(4):647-661.
|
[8] |
Zhang Q, Ma BQ, Li H, Chang YS, Han YY, et al. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple[J]. BMC Genomics, 2012, 13:537.
|
[9] |
Xu KN, Wang AD, Brown S. Genetic characterization of the Ma locus with pH and titratable acidity in apple[J]. Mol Breeding, 2012, 30(2):899-912.
|
[10] |
Bai Y, Dougherty L, Li MJ, Fazio G, Cheng LL, Xu KN. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple[J]. Mol Genet Genomics, 2012, 287(8):663-678.
|
[11] |
Ma BQ, Zhao S, Wu BH, Wang D, Peng Q, et al. Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple[J]. Tree Genet Genome, 2016, 12:1.
|
[12] |
Khan AS, Beekwilder J, Schaart JG, Mumm R, Soriano MJ, et al. Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16[J]. Tree Genet Genome, 2013, 9:475-487.
|
[13] |
Ma BQ, Liao L, Zheng HY, Chen J, Wu B, et al. Genes encoding aluminum-activated malate transporterⅡ and their association with fruit acidity in apple[J]. Plant Genome, 2015, 8:1-14.
|
[14] |
Jia D, Shen F, Wang Y, Wu T, Xu X, et al. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes:MdSAUR37, MdPP2CH and MdALMTII[J]. Plant J, 2018, 95(3):427-443.
|
[15] |
Ma BQ, Liao L, Fang T, Peng Q, Ogutu C, et al. AMa10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple[J]. Plant Biotechnol J, 2019, 17(3):674-686.
|
[16] |
Ma BQ, Yuan YY, Gao M, Qi TH, Li MJ, Ma FW. Genome-wide identification, molecular evolution, and expression divergence of Aluminum-activated malate transporters in apples[J]. Int J Mol Sci, 2018, 19(9):2807.
|
[17] |
Ma BQ, Yuan YY, Gao M, Xing L, Li CY, et al. Genome-wide identification, classification, molecular evolution and expression analysis of malate dehydrogenases in apple[J]. Int J Mol Sci, 2018, 19(11):3312.
|
[18] |
Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
|
[19] |
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007, 2(7):1565-1572.
|
[20] |
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, et al. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color[J]. Cell Rep, 2014, 6(1):32-43.
|
[21] |
Nelson BK, Cai X, Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants[J]. Plant J, 2007, 51(6):1126-1136.
|
[22] |
秦丹丹, 董静, 许甫超, 徐晴, 葛双桃, 等. 分子育种时代的作物种质资源创新与利用[J]. 大麦与谷类科学, 2016, 33(3):1-4, 19.
Qin DD, Dong J, Xu FC, Xu Q, Ge ST, et al. Innovation and utilization of crop germplasm resources during the era of molecular breeding[J]. Barley and Cereal Sciences, 2016, 33(3):1-4, 19.
|
[23] |
陈发棣, 陈素梅, 房伟民, 张飞, 蒋甲福, 等. 菊花优异种质资源挖掘与种质创新研究[J]. 中国科学基金, 2016, 30(2):112-115.
Chen FD, Chen SM, Fang WM, Zhang F, Jiang JF, et al. Discovery of excellent chrysanthemum germplasms and germplasm enhancement[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(2):112-115.
|
[24] |
Kühlbrandt W. Biology, structure and mechanism of P-type ATPases[J]. Nat Rev Mol Cell Biol, 2004, 5:282-295.
|
[25] |
Strazzer P, Spelt CE, Li S, Bliek M, Federici CT, et al. Hyperacidification of citrus fruits by a vacuolar proton-pumping P-ATPase complex[J]. Nat Commun, 2019, 26, 10(1):744.
|
[26] |
Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, et al. New insight into the history of domesticated apple:secondary contribution of the European wild apple to the genome of cultivated varieties[J]. PLoS Genet, 2012, 8(5):e1002703.
|
[27] |
Harris SA, Robinson JP, Juniper BE. Genetic clues to the origin of the apple[J]. Trends Genet, 2002, 18(8):426-430.
|
[28] |
Ma BQ, Liao L, Peng Q, Fang T, Zhou H, et al. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple[J]. J Integr Plant Biol, 2017, 59(3):190-204.
|
[29] |
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. The genome of the domesticated apple (Malus×domestica Borkh.)[J]. Nat Genet, 2010, 42(10):833-839.
|
[30] |
Wu J, Wang ZW, Shi ZB, Zhang S, Ming R, et al. The genome of the pear (Pyrus bretschneideri Rehd.)[J]. Genome Res, 2013, 23(2):396-408.
|
[31] |
Xu Q, Chen LL, Ruan XA, Chen DJ, Zhu AD, et al. The draft genome of sweet orange (Citrus sinensis)[J]. Nat Genet, 2013, 45(1):59-66.
|