Advance Search
Xie Hui-Min, Peng De-Zhen, Chen Yan-Ru, Luo Huo-Lin, Yang Bo-Yun, Xiong Dong-Jin. Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China[J]. Plant Science Journal, 2020, 38(1): 123-133. DOI: 10.11913/PSJ.2095-0837.2020.10123
Citation: Xie Hui-Min, Peng De-Zhen, Chen Yan-Ru, Luo Huo-Lin, Yang Bo-Yun, Xiong Dong-Jin. Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China[J]. Plant Science Journal, 2020, 38(1): 123-133. DOI: 10.11913/PSJ.2095-0837.2020.10123

Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31260485), Jiangxi Province Science and Technology Support Project (20122BBF60059), and Nanchang University Graduate Innovation Special Fund Project (CX2018104).

More Information
  • Received Date: June 04, 2019
  • Revised Date: June 30, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • We used ISSR molecular markers to study the genetic structure of 21 Cymbidium goeringii (Rchb. f.) Rchb. f. populations in the main mountain range of Jiangxi Province, China. Results showed that 139 bands were amplified by the 14 selected primers. Among these bands, 118 were polymorphic, resulting in a percentage of polymorphic bands (PPL) of 84.89%. The Nei’s gene diversity (He) and Shannon index (I) values of the 21 populations were 0.2292 and 0.3613, respectively. AMOVA analysis unveiled that inter-population variation (50.79%) was greater than intra-population variation (49.21%). Both these results of population genetic structure and UPGMA cluster analysis showed that the C. goeringii populations in the main mountain range of Jiangxi Province were geographically isolated and their habitats were fragmented. Based on the above analysis, we inferred that C. goeringii was once widely distributed in the mountain ranges of Luoxiao and Wuyi. Following the Quaternary glacial period, these populations declined sharply due to severe climate change, but were preserved to the present day in suitable environments between these two mountains. Thus, the Luoxiao and Wuyi mountains formed primary ice-age refuges for C. goeringii. These results, combined with the genetic diversity and structure of C. goeringii populations, may provide a valuable basis for conservation strategies. In situ conservation would be suitable for the Shicheng (SC), Yifeng (YF), and Guixi (GX) populations due to their sufficient genetic diversity, whereas ex situ strategies should be considered for Dayu (DY) and Jinggangshan (JGS), which have experienced serious resource destruction.
  • [1]
    陈心启, 吉占和. 中国兰花全书[M]. 2版. 北京:中国林业出版社, 2003.
    [2]
    Li XB, Jin F, Jin L, Jackson A, Huang C, Li KH, Shu XL. Development of Cymbidium ensifolium genic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums[J]. BMC Genetics, 2014, 15(1):124.
    [3]
    李丽辉, 胡瑶, 李宏告, 张跃龙, 张勇, 吴宏燕. 基于RAPD、ISSR标记的国兰种质资源遗传多样性研究[J]. 中国农学通报, 2018, 34(29):48-53.

    Li LH, Hu Y, Li HG, Zhang YL, Zhang Y, Wu HY. Study on genetic diversity of China orchid resources using RAPD and ISSR markers[J]. Chinese Agricultural Science Bulletin, 2018, 34(29):48-53.
    [4]
    马红勃, 赖鋆英, 许旭明, 陈昌铭, 尚伟, 罗志花, 江秋萍. 基于SRAP标记的大花蕙兰种质资源遗传多样性分析[J]. 植物遗传资源学报,2011, 12(4):551-556.

    Ma HB, Lai JJ, Xu XM, Chen CM, Shang W, Luo ZH, Jiang QP. Genetic diversity analysis of Hybrid Cymbidi-um's Germplasm resources based on SRAP markers[J]. Journal of Plant Genetic Resources, 2011, 12(4):551-556.
    [5]
    Bhattacharyya P, Kumaria S, Kumar S, Tandon P. Start codon targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species[J]. Gene, 2013, 529(1):21-26.
    [6]
    钱鑫, 李全健, 连静静, 王彩霞, 田敏. 濒危植物扇脉杓兰野生居群遗传多样性的AFLP分析[J]. 生态学杂志, 2013, 32(6):1445-1450.

    Qian X, Li QJ, Lian JJ, Wang CX, Tian M. Genetic diversity of endangered wild Cypripedium japonicum populations:An AFLP analysis[J]. Chinese Journal of Ecology, 2013, 32(6):1445-1450.
    [7]
    江亚雯, 孙小琴, 罗火林, 杨柏云, 熊冬金. 基于ISSR标记的江西野生寒兰居群遗传多样性研究[J]. 园艺学报, 2017, 44(10):1993-2000.

    Jiang YW, Sun XQ, Luo HL, Yang BY, Xiong DJ. Studies on genetic diversity of Cymbidium kanran populations from the main mountains in Jiangxi province based on ISSR marker[J]. Acta Horticulturae Sinica, 2017, 44(10):1993-2000.
    [8]
    Chung MY, Chung MG. Allozyme diversity in populations of Cymbidium goeringii (Orchidaceae)[J]. Plant Biology, 2000, 2(1):77-82.
    [9]
    Chung MY, Nason JD. Spatial demographic and genetic consequences of harvesting within populations of the terrestrial orchid Cymbidium goeringii[J]. Biol Conserv, 2007, 137(1):125-137.
    [10]
    牛田, 张林, 王厚新, 李承秀, 聂硕, 朱翠翠, 王长宪. 利用SRAP标记分析春兰种质资源遗传多样性[J]. 农学学报, 2014, 4(8):53-58.

    Niu T, Zhang L, Wang HX, Li CX, Nie S, Zhu CC, Wang CX. Genetic diversity analysis of Cymbidium goeringii's germplasm resources based on SRAP markers[J]. Journal of Agriculture, 2014, 4(8):53-58.
    [11]
    高丽, 杨波. 湖北野生春兰资源遗传多样性的ISSR分析[J]. 生物多样性, 2006, 14(3):250-257.

    Gao L, Yang B. Genetic diversity of wild Cymbidium goeringii (Orchidaceae) populations from Hubei based on ISSR analysis[J]. Biodiversity Science, 2006, 14(3):250-257.
    [12]
    Wang HZ, Wu ZX, Lu JJ, Shi NN, Zhao Y, Zhang ZT, Liu JJ. Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers[J]. Genetica, 2009, 136(3):391-99.
    [13]
    王晓英, 张林, 李承秀, 赵建文, 王郑昊, 王长宪. 51个春兰(Cymbidium goeringii)品种的AFLP遗传多样性分析[J]. 植物遗传资源学报, 2015, 16(3):653-658.

    Wang XY, Zhang L, Li CX, Zhao JW, Wang ZH, Wang CX. Genetic diversity analysis of 51Cymbidium goeringii cultivars by AFLP markers[J]. Journal of Plant Genetic Resources, 2015, 16(3):653-658.
    [14]
    Liu XF, Huang Y, Li F, Xu CJ, Chen KS. Genetic diversity of 129 spring orchid (Cymbidium goeringii) cultivars and its relationship to horticultural types as assessed by EST-SSR markers[J]. Scientia Horticulturae, 2014, 174(1):178-184.
    [15]
    Tsumura Y, Yoshimura K, Tomaru N, Ohba K. Molecular phytogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes[J]. Theor Appl Genet,1995, 91(8):1222-1236.
    [16]
    See LM, Hassan R, Tan SG, Bhassu S, Ambak MA, Bolong AMA, Peakell R. POPGENE, the user-friendly shareware for population genetic analysis[J]. Biotechnology, 2006, 7(2):104-110.
    [17]
    Excoffier L, Lischer HEL. Arlequin suite ver 3.5:A new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3):564-567.
    [18]
    Pritchard JK, Stephens MJ, Donnelly PJ. Inference of population structure using multilocus genotype data[J]. Genetics, 2000,155:945-959.
    [19]
    Earl DA, Vonholdt BM. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the evanno method[J]. Conserv Genet Resour, 2012, 4(2):359-361.
    [20]
    Jakobsson M, Rosenberg N. CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure[J]. Bioinformatics, 2007, 23(14):1801-1806.
    [21]
    Rosenberg NA. DISTRUCT:a program for the graphical display of population structure[J]. Mol Ecol Notes, 2004, 4(1):137-138.
    [22]
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.
    [23]
    He ZL, Zhang HK, Gao SH, Lercher MJ, Chen WH, Hu SN. Evolview v2:an online visualization and management tool for customized and annotated phylogenetic trees[J]. Nucleic Acids Res, 2016, 44(Web server issue):W236-W241.
    [24]
    Letunic I, Bork P. Interactive tree of life (iTOL) v3:an online tool for the display and annotation of phylogenetic and other trees[J]. Nucleic Acids Res, 2016, 44(Web server issue):W242-W245.
    [25]
    Evanno GS, Regnaut SJ, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:A simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.
    [26]
    Ayala FJ, Kiger JA. Modern Genetics[M]. 2nd ed. Menlo Park:Benjamin/Cummings, 1984:923.
    [27]
    Reisch C, Markus Bernhardt-Römermann. The impact of study design and life history traits on genetic variation of plants determined with AFLPs[J]. Plant Ecol, 2014, 215(12):1493-1511.
    [28]
    杜夏瑾, 黎啸峰, 吴敏, 王丽. 生活史性状和取样策略对植物微卫星遗传多样性参数估算的影响[J]. 湖南师范大学自然科学学报, 2015, 38(4):21-28.

    Du XJ, Li XF, Wu M, Wang L. Effects of life history traits and sampling strategies on microsatellite-based genetic diversity estimates in plants[J]. Journal of Natural Science of Hunan Normal University, 2015, 38(4):21-28.
    [29]
    Bussell. The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae)[J]. Mol Ecol, 1999, 8(5):775-789.
    [30]
    Case MA. High levels of allozyme variation within Cypripdeium caleolus (Orchidaceae) and low levels of divergence among its varieties[J]. Syst Bot, 1993, 18(4):663-677.
    [31]
    Fan DM, Sun ZX, Li B, Kou YX, Hodel RGJ, Jin ZN, Zhang ZY. Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of and geospatial data[J]. Ecol Evol, 2017, 7(14):5140-5148.
    [32]
    Elam EDR. Population genetic consequences of small population size:Implications for plant conservation[J]. Annu Rev Ecol Syst, 1993, 24:217-242.
    [33]
    Young A. The population genetic consequences of habitat fragmentation for plants[J]. Trends Ecol Evol, 1996, 11:413-418.
    [34]
    Hogbin PM, Peakall R. Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata[J]. Conserv Biol, 1999, 13(3):514-522.
    [35]
    Hamrick JL, Godt MJW. Conservation genetics of ende-mic plant species[M]//Avise JC, Hamrick JL, eds. Conservation Genetics:Case Histories from Nature. New York:Chapman and Hall, 1996:281-304.
  • Related Articles

    [1]Li Yong, Wang Fan, Wang Shu-Chen, Yang Ya-Lin, Zhang Ling. Effects of cold stress on leaf physiological characteristics in Forsythia suspensa (Thunb.) Vahl seedlings[J]. Plant Science Journal, 2023, 41(1): 102-111. DOI: 10.11913/PSJ.2095-0837.22091
    [2]MA Qiong-fang, YAN Hong, KONG Wei-yao, CHEN Ling, LI Wei-dong, ZOU Chang-lin, ZHANG Chao-fan. Effects of hydrology and salinity on chlorophyll fluorescence parameters of Scirpus nipponicus Makino[J]. Plant Science Journal, 2021, 39(6): 654-662. DOI: 10.11913/PSJ.2095-0837.2021.60654
    [3]Jin Quan, Li Peng-Peng, Zhang Rui-Hua, Yin Li-Yan. Chlorophyll fluorescence characteristics and HCO3- utilization capability of heteromorphic leaves of Ottelia cordata[J]. Plant Science Journal, 2019, 37(5): 637-643. DOI: 10.11913/PSJ.2095-0837.2019.50637
    [4]Liu Wen-Xin, Wan Xian-Chong. Responses of different photosynthetic physiological processes in Populus alba×P. glandulosa to drought and rehydration[J]. Plant Science Journal, 2019, 37(4): 530-539. DOI: 10.11913/PSJ.2095-0837.2019.40530
    [5]YANG Yang, JIA Zhong-Kui, CHEN Fa-Ju, SANG Zi-Yang, MA Lü-Yi. Optimal Light Regime for the Rare Species Magnolia wufengensis in Northern China[J]. Plant Science Journal, 2015, 33(3): 377-387. DOI: 10.11913/PSJ.2095-0837.2015.30377
    [6]LI Tao, LI Ai-Fen, ZHANG Cheng-Wu, XU Ning, DUAN Shun-Shan. Effects of Fe3+ on Growth and Fluorescence Characteristics of Haematococcus pluvialis[J]. Plant Science Journal, 2009, 27(6): 643-649.
    [7]LI Jing, XU Zhi-Fang, YE Wan-Hui. Effects of Different Stress Treatments on Chlorophyll a Fluorescence in Detached Leaves of Castanopsis hystrix[J]. Plant Science Journal, 2006, 24(5): 429-434.
    [8]ZHAO Xue-Min, BI Yong-Hong, HU Zheng-Yu. Effects of Different Medium on the Growth and Photosynthetic Activity of Nostoc flagelliforme[J]. Plant Science Journal, 2005, 23(4): 332-336.
    [9]ZHANG Jiao-Lin, CAO Kun-Fang. The Effects of Night Chilling on Chlorophyll Fluorescence in Seedlings of Two Tropical Rain Forest Tree Species[J]. Plant Science Journal, 2003, 21(4): 356-360.
    [10]Chen Yizhu, He Jie, Li Ping, Lin Daoxuan, Zhang Xu. THE INFLUENCE OF CHILLING TEMPERATURE ON THE CHANGES IN CHLOROPHYLL FLUORESCENCE IN VIVO IN RICE FLAG LEAVES[J]. Plant Science Journal, 1989, 7(1): 71-75.
  • Cited by

    Periodical cited type(4)

    1. 罗怡清,张博文,杜健. 持续干旱对毛竹实生苗叶绿素荧光参数的影响. 世界竹藤通讯. 2024(03): 26-30 .
    2. 李颖. 根据科技文献命制的原创高中生物试题实例解析. 高考. 2023(18): 6-8 .
    3. 李程勋,徐晓俞,郑开斌,李爱萍. 蚕豆发芽过程中蛋白质和抗氧化能力的变化. 核农学报. 2022(11): 2190-2198 .
    4. 周美才,李彬,丰华新,王艳琴,刘远生. 5个竹种叶片叶绿素荧光特性分析. 世界竹藤通讯. 2022(06): 30-34 .

    Other cited types(9)

Catalog

    Article views (771) PDF downloads (1153) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return