Advance Search
Lou Yong-Feng, Gao Zhi-Min. Role of xanthophyll cycle and D1 protein turnover in photoprotection of Phyllostachys edulis (Carr.) Lehaie leaves[J]. Plant Science Journal, 2020, 38(1): 134-142. DOI: 10.11913/PSJ.2095-0837.2020.10134
Citation: Lou Yong-Feng, Gao Zhi-Min. Role of xanthophyll cycle and D1 protein turnover in photoprotection of Phyllostachys edulis (Carr.) Lehaie leaves[J]. Plant Science Journal, 2020, 38(1): 134-142. DOI: 10.11913/PSJ.2095-0837.2020.10134

Role of xanthophyll cycle and D1 protein turnover in photoprotection of Phyllostachys edulis (Carr.) Lehaie leaves

Funds: 

This work was supported by grants from the Sub-Project of National Science and Technology Support Plan of the Twelfth Five-Year in China (2015BAD04B0101) and National Natural Science Foundation of China (31370588).

More Information
  • Received Date: June 15, 2019
  • Revised Date: July 15, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • To investigate the roles of the xanthophyll cycle and D1 protein turnover in photoprotection of bamboo, we applied chlorophyll fluorescence techniques to measure the characteristics of photoinhibition in moso bamboo (Phyllostachys edulis (Carr.) Lehaie) leaves under strong light and xanthophyll cycle inhibitor-dithiothreitol (DTT) and D1 protein synthesis inhibitor-streptomycin sulfate (SM) treatment, respectively. Results showed that the maximum photochemical efficiency (Fv/Fm) decreased significantly in leaves of Ph. edulis exposed to strong artificial light or strong natural noon light in summer. However, the Fv/Fm value could be restored under darkness or in the afternoon under decreased intensity of sunlight. Non-photochemical quenching (NPQ) in Ph. edulis leaves was inhibited by the DTT and SM treatments, with the inhibition effect of DTT significantly better than that of SM. In addition, the DTT and SM treatments increased the declining degree of chlorophyll fluorescence parameters in Ph. edulis leaves under strong light, including Fv/Fm, actual photochemical efficiency Y(Ⅱ), and photochemical quenching qP. These results suggest that Ph. edulis leaves possess a complete photoprotection defense mechanism. NPQ is closely associated with the xanthophyll cycle and D1 protein turnover, which plays an important role in Ph. edulis photoprotection.
  • [1]
    Müller P, Li XP, Niyogi KK. Non-photochemical quen-ching. A response to excess light energy[J]. Plant Phy-siol, 2001, 125(4):1558-1566.
    [2]
    郭连旺, 沈允钢. 高等植物光合机构避免强光破坏的保护机制[J]. 植物生理学通讯, 1996, 32(1):1-8.

    Guo LW, Shen YG. Protective mechanisms against photodamage in photosynthetic apparatus of higher plants[J]. Plant Physiology Communications, 1996, 32(1):1-8.
    [3]
    周丽英, 付忠, 卜璐璐, 杨春雷, 高婷, 杨正安. 植物光破坏防御机制研究进展[J]. 亚热带植物科学, 2016, 45(3):290-294.

    Zhou LY, Fu Z, Bu LL, Yang CL, Gao T, Yang ZA. Research progress of photoprotection mechanism in plants[J]. Subtropical Plant Science, 2016, 45(3):290-294.
    [4]
    Takahashi S, Badger MR. Photoprotection in plants:a new light on photosystemⅡ damage[J]. Trends Plant Sci, 2011, 16(1):53-60.
    [5]
    Goss R, Lepetit B. Biodiversity of NPQ[J]. J Plant Phy-siol, 2015, 172:13-32.
    [6]
    颉敏华, 张继澍, 郁继华, 颉建明. D1蛋白周转和叶黄素循环在青花菜叶片强光破坏防御中的作用[J]. 中国农业科学, 2009, 42(5):1582-1589.

    Xie MH, Zhang JS, Yu JH, Xie JM. The role of D1 protein turnover and xanthophylls cycle in protecting photosynthetic apparatus of broccoli leaves against photoda-mage[J]. Scientia Agricultura Sinica, 2009, 42(5):1582-1589.
    [7]
    徐建旭, 周慧芬, 邱翠花, 郭延平, 计玮玮, 焦云. 高温强光下温州蜜柑光合机构运转与叶黄素循环和D1蛋白周转的关系[J]. 园艺学报, 2011, 38(2):205-214.

    Xu JX, Zhou HF, Qiu CH, Guo YP, Ji WW, Jiao Y. Studies on the relationship among photosynthetic apparatus operation, xanthophylls cycle and D1 protein turnover in satsuma mandarin leaves under high temperature and strong light[J]. Acta Horticulturae Sinica, 2011, 38(2):205-214.
    [8]
    张会慧, 张秀丽, 李鑫, 许楠, 孙广玉. 盐胁迫下桑树叶片D1蛋白周转和叶黄素循环对PSⅡ的影响[J]. 林业科学, 2013, 49(1):99-106.

    Zhang HH, Zhang XL, Li X, Xu N, Sun GY. Role of D1 protein turnover and xanthophylls cycle in protecting of photosystemⅡ functions in leaves of Morus alba under NaCl stress[J]. Scientia Silvae Sinicae, 2013, 49(1):99-106.
    [9]
    Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana[J]. Plant Cell, 2009, 21(7):2036-2044.
    [10]
    王彦杰. 番茄叶片叶黄素部分缺失下不同光保护途径对干旱胁迫的响应[D]. 杭州:浙江大学, 2007.
    [11]
    王宁. 低温胁迫下番茄玉米黄质环氧化酶基因的表达和功能研究[D]. 泰安:山东农业大学, 2008.
    [12]
    Goss R, Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae[J]. Photosynth Res, 2010, 106(1/2):103-122.
    [13]
    姜闯道, 高辉远, 邹琦. D1蛋白周转及其对能量耗散的调节[J]. 植物生理学通讯, 2002, 38(3):207-212.

    Jiang CD, Gao HY, Zhou Q. D1 protein turnover and the regulation of exited energy dissipation[J]. Plant Physio-logy Communications, 2002, 38(3):207-212.
    [14]
    Aro EM, McCaffery S, Andenson JM. Recovery from photoinhibition in peas (Pisum sativum L.) acclimated to varying growth irradiances:role of D1 protein turnover[J]. Plant Physiol, 1994, 104(3):1033-1041.
    [15]
    Jiang CD, Gao HY, Zou Q. Effects of streptomycin treatment on chlorophyll fluorescence parameters and xanthophyll de-epoxidation level in maize leaves[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(3):221-226.
    [16]
    杨卫丽, 黄福灯, 曹珍珍, 雷炳婷, 胡东维, 程方民. 高温胁迫对水稻光合PSⅡ系统伤害及其与叶绿体D1蛋白间关系[J]. 作物学报, 2013, 39(6):1060-1068.

    Yang WL, Huang FD, Cao ZZ, Lei BT, Hu DW, Cheng FM. Effects of high temperature stress on PSⅡ function and its relation to D1 protein in chloroplast thylakoid in rice flag leaves[J]. Acta Agronomica Sinica, 2013, 39(6):1060-1068.
    [17]
    Gao YB, Zheng WW, Zhang C, Zhang LL, Xu K. High temperature and high light intensity induced photoinhibition of bayberry (Myrica rubra Sieb. et Zucc.) by disruption of D1 turnover in photosystemII[J]. Scientia Horticulturae, 2019, 248:132-137.
    [18]
    Gao ZM, Liu Q, Zheng B, Chen Y. Molecular cloning and functional analysis of violaxanthin deepoxidase gene (PeVDE) from Phyllostachys edulis[J]. Plant Cell Rep, 2013, 32(9):1381-1391.
    [19]
    Lou YF, Sun HY, Li LC, Zhao HS, Gao ZM. Characteri-zation and primary functional analysis of a bamboo ZEP gene from Phyllostachys edulis[J]. DNA Cell Biol, 2017, 36(9):747-758.
    [20]
    孙化雨, 娄永峰, 赵韩生, 高志民. 二硫苏糖醇对金镶玉竹叶绿素荧光参数的影响[J]. 竹子研究汇刊, 2015, 34(3):13-18,62.

    Sun HY, Lou YF, Zhao HS, Gao ZM. The influence of dithiothreitol treatments on leaf chlorophyll fluorescence parameters of Phyllostachys aureosulcata f. spectabilis[J]. Journal of Bamboo Research, 2015, 34(3):13-18,62.
    [21]
    李新国, 孟庆伟, 赵世杰. 强光胁迫下银杏叶片的光抑制及其防御机制[J]. 林业科学, 2004, 40(3):56-59.

    Li XG, Meng QW, Zhao SJ. Photoinhibition and photoprotection mechanisms in Ginkgo biloba leaves under strong light stress[J]. Scientia Silvae Sinicae, 2004, 40(3):56-59.
    [22]
    Wang Q, Zhang QD, Zhu XG, Lu CM, Kuang TY, Li CQ. PSⅡ photochemistry and xanthophylls cycle in two superhigh-yield rice hybrids, Liangyoupeijiu and Hua-an 3 during photoinhibition and subsequent restoration[J]. Acta Botanica Sinica, 2002, 44(11):1297-1302.
    [23]
    宋丽丽, 郭延平, 徐凯, 张良诚. 温州蜜柑叶片光合作用光抑制的保护机理[J]. 应用生态学报, 2003, 14(1):47-50.

    Song LL, Guo YP, Xu K, Zhang LC. Protective mechanism in photoinhibition of photosynthesis in Citrus unshiu leaves[J]. Chinese Journal of Applied Ecology, 2003, 14(1):47-50.
    [24]
    张雅君, 吴含玉, 张会金, 姜闯道. 夏季小花睡莲挺水叶光抑制加剧的机制[J]. 植物生理学报, 2018, 54(1):54-62.

    Zhang YJ, Wu HY, Zhang HJ, Jiang CD. Mechanism of photoinhibition in emerged leaf of Nymphaea micrantha Guill. & Perr. in summer[J]. Plant Physiology Journal, 2018, 54(1):54-62.
    [25]
    Lin RC, Xu CC, Li LB, Kuang TY. Xanthophyll cycle and its molecular mechanism in photoprotection[J]. Acta Botanica Sinica, 2002, 44(4):379-383.
    [26]
    Endo T, Uebayashi N, Ishida S, Ikeuchi M, Sato F. Light energy allocation at PSⅡ under field light conditions:How much energy is lost in NPQ-associated dissipation?[J]. Plant Physiol Biochem, 2014, 81:115-120.
    [27]
    Hendrickson L, Furbank RT, Chow WS. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynth Res, 2004, 82(1):73-81.
    [28]
    Niyogi KK, Grossman AR, Björkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion[J]. Plant Cell, 1998, 10(7):1121-1134.
    [29]
    Li X, Zhao W, Sun X, Huang H, Kong L, et al. Molecular cloning and characterization of violaxanthin de-epoxidase (CsVDE) in cucumber[J]. PLoS One, 2013, 8(5):e64383.
    [30]
    姜闯道, 高辉远, 邹琦, 蒋高明. 二硫苏糖醇处理导致大豆叶片两光系统间激发能分配失衡[J]. 植物生理与分子生物学学报, 2003, 29(6):561-568.

    Jiang CD, Gao HY, Zou Q, Jiang GM. Imbalance in excited energy distribution between two photosystems induced by feeding dithiothreitol to soybean leaves[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(6):561-568.
    [31]
    Mou S, Zhang X, Dong M, Fan X, Xu J, Cao S, et al. Photoprotection in the green tidal alga Ulva prolifera:role of LHCSR and PSBS proteins in response to high light stress[J]. Plant Biol, 2013, 15(6):1033-1039.
    [32]
    郑有飞, 赵泽, 吴荣军, 张金恩, 胡程达. 臭氧胁迫对冬小麦光响应能力及PSⅡ光能吸收与利用的影响[J]. 生态学报, 2010, 30(24):6771-6780.

    Zheng YF, Zhao Z, Wu RJ, Zhang JN, Hu CD. Ozone stress on light response capacity and on the utilization of PSⅡ absorbed light energy of winter wheat[J]. Acta Ecologica Sinica, 2010, 30(24):6771-6780.
    [33]
    何勇, 符庆功, 朱祝军. 低温弱光对辣椒叶片光合作用、叶绿素荧光猝灭及光能分配的影响[J]. 核农学报, 2013, 27(4):479-486.

    He Y, Fu QG, Zhu ZJ. Effects of chilling under low irradiance on photosynthesis, chlorophyll fluorescence quenching and light allocation in pepper leaves[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(4):479-486.
  • Related Articles

    [1]Li Yong, Wang Fan, Wang Shu-Chen, Yang Ya-Lin, Zhang Ling. Effects of cold stress on leaf physiological characteristics in Forsythia suspensa (Thunb.) Vahl seedlings[J]. Plant Science Journal, 2023, 41(1): 102-111. DOI: 10.11913/PSJ.2095-0837.22091
    [2]MA Qiong-fang, YAN Hong, KONG Wei-yao, CHEN Ling, LI Wei-dong, ZOU Chang-lin, ZHANG Chao-fan. Effects of hydrology and salinity on chlorophyll fluorescence parameters of Scirpus nipponicus Makino[J]. Plant Science Journal, 2021, 39(6): 654-662. DOI: 10.11913/PSJ.2095-0837.2021.60654
    [3]Jin Quan, Li Peng-Peng, Zhang Rui-Hua, Yin Li-Yan. Chlorophyll fluorescence characteristics and HCO3- utilization capability of heteromorphic leaves of Ottelia cordata[J]. Plant Science Journal, 2019, 37(5): 637-643. DOI: 10.11913/PSJ.2095-0837.2019.50637
    [4]Liu Wen-Xin, Wan Xian-Chong. Responses of different photosynthetic physiological processes in Populus alba×P. glandulosa to drought and rehydration[J]. Plant Science Journal, 2019, 37(4): 530-539. DOI: 10.11913/PSJ.2095-0837.2019.40530
    [5]YANG Yang, JIA Zhong-Kui, CHEN Fa-Ju, SANG Zi-Yang, MA Lü-Yi. Optimal Light Regime for the Rare Species Magnolia wufengensis in Northern China[J]. Plant Science Journal, 2015, 33(3): 377-387. DOI: 10.11913/PSJ.2095-0837.2015.30377
    [6]LI Tao, LI Ai-Fen, ZHANG Cheng-Wu, XU Ning, DUAN Shun-Shan. Effects of Fe3+ on Growth and Fluorescence Characteristics of Haematococcus pluvialis[J]. Plant Science Journal, 2009, 27(6): 643-649.
    [7]LI Jing, XU Zhi-Fang, YE Wan-Hui. Effects of Different Stress Treatments on Chlorophyll a Fluorescence in Detached Leaves of Castanopsis hystrix[J]. Plant Science Journal, 2006, 24(5): 429-434.
    [8]ZHAO Xue-Min, BI Yong-Hong, HU Zheng-Yu. Effects of Different Medium on the Growth and Photosynthetic Activity of Nostoc flagelliforme[J]. Plant Science Journal, 2005, 23(4): 332-336.
    [9]ZHANG Jiao-Lin, CAO Kun-Fang. The Effects of Night Chilling on Chlorophyll Fluorescence in Seedlings of Two Tropical Rain Forest Tree Species[J]. Plant Science Journal, 2003, 21(4): 356-360.
    [10]Chen Yizhu, He Jie, Li Ping, Lin Daoxuan, Zhang Xu. THE INFLUENCE OF CHILLING TEMPERATURE ON THE CHANGES IN CHLOROPHYLL FLUORESCENCE IN VIVO IN RICE FLAG LEAVES[J]. Plant Science Journal, 1989, 7(1): 71-75.
  • Cited by

    Periodical cited type(4)

    1. 罗怡清,张博文,杜健. 持续干旱对毛竹实生苗叶绿素荧光参数的影响. 世界竹藤通讯. 2024(03): 26-30 .
    2. 李颖. 根据科技文献命制的原创高中生物试题实例解析. 高考. 2023(18): 6-8 .
    3. 李程勋,徐晓俞,郑开斌,李爱萍. 蚕豆发芽过程中蛋白质和抗氧化能力的变化. 核农学报. 2022(11): 2190-2198 .
    4. 周美才,李彬,丰华新,王艳琴,刘远生. 5个竹种叶片叶绿素荧光特性分析. 世界竹藤通讯. 2022(06): 30-34 .

    Other cited types(9)

Catalog

    Article views (705) PDF downloads (1061) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return