Citation: | Yan Dong-Ying, Li Yan, Sun Wen-Li, Chen Jin-Ming, Li Zhi-Zhong. Estimation of genome sizes of plants from Ottelia Pers. based on flow cytometry[J]. Plant Science Journal, 2020, 38(2): 173-180. DOI: 10.11913/PSJ.2095-0837.2020.20173 |
[1] |
柳觐, 牛迎凤, 吴裕, 毛常丽, 张凤良, 刘紫艳, 等. 巴西橡胶树栽培种质基因组C值测定和变异分析[J]. 热带亚热带植物学报, 2018, 26(5):523-528.
Liu J, Niu YF, Wu Y, Mao CL, Zhang FL, Liu ZY, et al. Genome C-value and variation analysis of cultivated rubber tree (Hevea brasiliensis) germplasms by flow ctometry[J]. Journal of Tropical and Subtropical Botany, 2018, 26(5):523-528.
|
[2] |
Leushkin EV, Sutormin RA, Nabieva ER, Penin AA, Kondrashov AS, Logacheva MD. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences[J]. BMC Geno-mics, 2013, 14(1):476-476.
|
[3] |
Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all?[J]. Bot J Linn Soc, 2010, 164:10-15.
|
[4] |
Obermayer R, Leitch IJ, Hanson L, Michael DB. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes[J]. Ann Bot, 2002, 90(2):209-217.
|
[5] |
Leitch IJ, Soltis DE, Soltis PS, Bennett MD. Evolution of DNA amounts across land plants (Embryophyta)[J]. Ann Bot, 2005, 95(1):207-217.
|
[6] |
Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms:targets, trends and tomorrow[J]. Ann Bot, 2011, 107(3):467-590.
|
[7] |
石米娟, 程莹寅, 张婉婷, 夏晓勤. 浅析基因组大小的进化机制[J]. 科学通报, 2016, 61(30):3188-3195.
Shi MJ, Cheng YY, Zhang WT, Xia XJ. The evolutionary mechanism of genome size[J]. Chinese Science Bulletin, 2016, 61(30):3188-3195.
|
[8] |
解梦, 于晶, 郭水良. 植物核DNA含量在全球尺度上的纬度变异式样及其气候适应意义:以菊科植物为例[J]. 生态学报, 2018, 38(10):3453-3461.
Xie M,Yu J,Guo SL.Latitudinal variation patterns of plant nuclear DNA amount on a global scale and their environmental adaptation significance:a case study with Asteraceae[J]. Acta Ecologica Sinica, 2018, 38(10):3453-3461.
|
[9] |
Bainard JD, Bainard LD, Henry TA, Fazekes AJ, Newmaster SG. A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits[J]. New Phytol, 2012, 196:1240-1250.
|
[10] |
Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM. Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera[J]. Am J Bot, 2006, 93:148-156.
|
[11] |
Chrtek J, Zahradnicek J, Krak K, Fehrer J. Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups[J]. Ann Bot, 2009, 104:161-178.
|
[12] |
Andrés-Sánchez S, Temsch EM, Rico E, Martínez-Ortega MM. Genome size in Filago L. (Asteraceae, Gnaphalieae) and related genera:phylogenetic, evolutionary and ecological implications[J]. Plant Syst Evol, 2013, 299:331-345.
|
[13] |
Kang M, Tao J, Wang J, Ren C, Qi QW, Xiang QY, Huang HW. Adaptive and nonadaptive genome size evolution in Karst endemic flora of China[J]. New Phytol, 2014, 202(4):1371-1381.
|
[14] |
Les DH, Garvin DK, Wimpee CF. Molecular evolutionary history of ancient aquatic angiosperms[J]. PNAS, 1991, 88(22):10119-10123.
|
[15] |
Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heteroge-neity in a stressful environment[J]. Acta Oecol-Int J Ecol, 2002, 23(3):137-154.
|
[16] |
Du ZY, Wang QF, Consortium CP. Phylogenetic tree of vascular plants reveals the origins of aquatic angiosperms[J]. J Syst Evol, 2015, 54(4):342-348.
|
[17] |
Pellicer J, Kelly LJ, Magdalena C, Leitch IJ. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies)[J]. Genome, 2013, 56(8):437-449.
|
[18] |
Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, Pacini E, et al. Ecological and evolutionary significance of genomic GC content diversity in monocots[J]. PNAS, 2014, 111(39):e4096-e4102.
|
[19] |
Hidalgo O, Pellicer J, Christenhusz M, Schneider H, Leitch AR, Leitch IJ. Is there an upper limit to genome size?[J]. Trends Plant Sci, 2017, 22(7):567-573.
|
[20] |
Li H. Classification, distribution and phylogeny of the genus Ottelia[J]. Acta Phytotaxon Sin, 1981, 19:29-42.
|
[21] |
蒋柱檀, 李恒, 刀志灵. 海菜花(水鳖科)一新变种:嵩明海菜花[J]. 广西植物, 2005, 25(5):424-425.
Jiang ZT, Li H, Dao ZL. Ottelia acuminata var. songmingensis, a new variety of the Hydrocharitaceae from Yunnan, China[J]. Guihaia, 2005, 25(5):424-425.
|
[22] |
Cook CDK, Symoens JJ, Urmi-Konig K. A revision of the genus Ottelia (Hydrocharitaceae).Ⅰ. Generic considerations[J]. Aquat Bot, 1984, 18(3):263-274.
|
[23] |
Li ZZ, Liao K, Zuo CY, Liu Y, Hu GW, Wang QF. Ottelia guanyangensis (Hydrocharitaceae), a new species from southwestern China[J]. Phytotaxa, 2018, 361(3):294-300.
|
[24] |
何景彪, 孙祥钟, 钟扬, 黄德世. 海菜花属的分支学研究[J]. 武汉植物学研究, 1991, 9(2):121-129.
He JB, Sun XZ, Zhong Y, Huang DS. Cladistic studies on the genus Ottelia (Hydrocharitaceae)[J]. Journal of Wuhan Botanical Research, 1991, 9(2):121-129.
|
[25] |
Chen JM, Du ZY, Long ZC, Gichira AW, Wang QF. Molecular divergence among varieties of Ottelia acuminata (Hydrocharitaceae) in the Yunnan-Guizhou Plateau[J]. Aquat Bot, 2017, 140:62-68.
|
[26] |
Guo JL, Yu YH, Zhang JW, Li ZM, Zhang YH, Volis S. Conservation strategy for aquatic plants:endangered Ottelia acuminata (Hydrocharitaceae) as a case study[J]. Biodivers Conserv, 2019, 28:1533-1548.
|
[27] |
Ito Y, Tanaka N, Barfod AS, Bogner J, Li J, Yano O, Gale SW. Molecular phylogenetic species delimitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species[J]. J Plant Res, 2019, 132:335-344.
|
[28] |
Fan XR, Henry KN, Li W, Chen YY. Abundant historical gene flow within and among river systems for populations of Ottelia acuminata var. jingxiensis, an endangered macrophyte from southwest China[J]. Aquat Bot, 2019, 157:1-9.
|
[29] |
Li ZZ, Lu MX, Andrew WG, Rabiul MI, Wang QF, Chen JM. Genetic diversity and population structure of Ottelia acuminata var. jingxiensis, an endangered endemic aquatic plant from southwest China[J]. Aquat Bot, 2019, 152:20-26.
|
[30] |
汪艳, 肖媛, 刘伟, 李婷婷, 胡锐, 乔志仙. 流式细胞仪检测高等植物细胞核DNA含量的方法[J]. 植物科学学报, 2015, 33(1):126-131.
Wang Y, Xiao Y, Liu W, Li TT, Hu R, Qiao ZX. Operation skills of flow cytometer for detecting nuclear DNA contents in higher plant cells[J]. Plant Science Journal, 2015, 33(1):126-131.
|
[31] |
林丹, 李冰冰, 赵振利, 邓敏捷, 董焱鹏, 翟晓巧, 范国强. 基于流式细胞仪对不同品种泡桐倍性及白花泡桐基因组大小的测定[J]. 河南农业大学学报, 2019, 53(3):337-342.
Lin D,Li BB,Zhao ZL,Deng MJ,Dong YP,Zhai XQ,Fan GQ. Determination of ploidy of different paulownia species and genome size of Paulownia fortunei based on flow cytometry[J]. Journal of Henan Agricultural University, 2019, 53(3):337-342.
|
[32] |
Diao Y, Chen L, Yang GX, Zhou MQ, Song YC, Hua ZL, Liu JY. Nuclear DNA C-values in 12 species in Nymphaeales[J]. Caryologia, 2006, 59(1):25-30.
|
[33] |
王瑛, 陈建军. 植物基因组大小进化的研究进展[J]. 遗传, 2009, 31(5):464-470.
Wang Y, Cheng JJ. Recent progress in plant genome size evolution[J]. Hereditas, 2009, 31(5):464-470.
|
[34] |
Feng RJ, Wang X, Tao M, Du GH, Wang QH. Genome size and identification of abundant repetitive sequences in Vallisneria spinulosa[J]. Peer J, 2017, 5(10):e3982.
|