Advance Search
Chen Mu-Ya, Liu Kang, Zhang Hong-Juan, Zhang Yue. Comparison of time series models for predicting net primary productivity dynamic changes of Abies fargesii Franch. on the southern slopes of Taibai Mountain[J]. Plant Science Journal, 2020, 38(3): 323-334. DOI: 10.11913/PSJ.2095-0837.2020.30323
Citation: Chen Mu-Ya, Liu Kang, Zhang Hong-Juan, Zhang Yue. Comparison of time series models for predicting net primary productivity dynamic changes of Abies fargesii Franch. on the southern slopes of Taibai Mountain[J]. Plant Science Journal, 2020, 38(3): 323-334. DOI: 10.11913/PSJ.2095-0837.2020.30323

Comparison of time series models for predicting net primary productivity dynamic changes of Abies fargesii Franch. on the southern slopes of Taibai Mountain

Funds: 

This work was supported by a grant from the National Forestry Public Welfare Industry Scientific (201304309).

More Information
  • Received Date: September 02, 2019
  • Revised Date: November 06, 2019
  • Available Online: October 31, 2022
  • Published Date: June 27, 2020
  • Based on meteorological data collected from 1959 to 2016 and physiological parameters of Abies fargesii Franch. forest in Taibai Mountain, we used the Biome-BGC model to calculate some results, and then analyzed the results. Then we got the annual net primary productivity (NPP) of Abies fargesii forest on the southern slopes of Taibai Mountain. Using the autoregressive integrated moving average (ARIMA) model, R language, and NAR (Nonlinear auto-regressive) dynamic neural network model to make trend fitting and short-term predictions regarding changes about NPP's dynamic change respectively, in order to establish a time series model that applied to NPP of Abies fargesii forest on the southern slopes of Taibai Mountain. Using the white noise test and other inspection methods, we evaluated the predictive results of the three models.Results indicated that:the NPP of Abies fargesii forest on the southern slopes of Taibai Mountain showed a rising trend from 2017 to 2026, and the highest value probably appeared since 1959. In forecasting future changes in Abies fargesii forest, the three prediction models demonstrated their own characteristics:the ARIMA model passed the white noise test on the NPP prediction results of the Abies fargesii forest, and given the possible results under different confidence intervals; NAR dynamic neural network model showed good fitting effect, and also passed the error autocorrelation test. The prediction results well simulated future change trends; R language can use the basic data to simulate the NPP dynamic change of Abies fargesii forest on the southern slopes of Taibai Mountain after removing abnormal data points. The results showed that the correlation between the prediction results and verification results was 0.944, and the P value of the error term was far lower than 0.01. The models constructed by the three methods showed good results in data fitting, and the prediction results were also in the credible range. Therefore, different methods can be selected according to the characteristics of data in practical work.
  • [1]
    Zhou GS, He QJ. Terrestrial transect study on the responses of ecosystems to global change[J]. Advances in Earth Science, 2012, 27(5):563-572.
    [2]
    韦振锋, 王德光, 张翀, 刘宪锋,张晗. 1999-2010年中国西北地区植被覆盖对气候变化和人类活动的响应[J]. 中国沙漠, 2014, 34(6):1665-1670.

    Wei ZF, Wang DG, Zhang C, Liu XF, Zhang H. Response of vegetation cover to climate change and human activities in northwest China during 1999-2010[J]. Journal of Desert Research, 2014, 34(6):1665-1670.
    [3]
    Stone D, Auffhammer M, Carey M, Carey M, Hansen G, Huggel C, et al. The challenge to detect and attribute effects of climate change on human and natural systems[J]. Climatic Change, 2013, 121(2):381-395.
    [4]
    王静, 万红莲, 姚顺波. 生长季川陕不同地带植被覆盖对气候变化的时空响应[J]. 生态学报, 2019, 39(14):5218-5231.

    Wang J, Wan HL, Yao SB. Spatial and temporal response of vegetation cover to climate change in different zones of Sichuan-Shaanxi area during growing season[J]. Acta Ecologica Sinica, 2019, 39(14):5218-5231.
    [5]
    穆少杰, 李建龙, 杨红飞, 刚成诚, 陈奕兆. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系[J]. 草业学报, 2013, 22(3):9-18.

    Mu SJ, Li JL, Yang HF, Gang CC, Chen YZ. Spatiotemporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia[J]. Acta Prataculturae Sinica, 2013, 22(3):9-18.
    [6]
    王钊, 李登科. 2000-2015年陕西植被净初级生产力时空分布特征及其驱动因素[J]. 应用生态学报, 2018, 29(6):1876-1884.

    Wang Z, Li DK. Spatial-temporal distribution of vegetation net primary productivity and its driving factors from 2000 to 2015 in Shaanxi,China[J]. Chinese Journal of Applied Ecology, 2018, 29(6):1876-1884.
    [7]
    谢宝妮, 秦占飞, 王洋, 常庆瑞. 黄土高原植被净初级生产力时空变化及其影响因素[J]. 农业工程学报, 2014, 30(11):252-261.

    Xie BN, Qin ZF, Wang Y, Chang QR. Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11):252-261.
    [8]
    刘洁, 孟宝平, 葛静, 高金龙, 殷建鹏, 侯蒙京, 等. 基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究[J]. 草业学报, 2019, 28(6):19-32.

    Liu J, Meng BP, Ge J, Gao JL, Yin JP, Hou MJ, et al. Spatio-temporal dynamic changes of grassland NPP in Gannan prefecture, as determined by the CASA model[J]. Acta Prataculturae Sinica, 2019, 28(6):19-32.
    [9]
    张禹舜, 贾文雄, 赵一飞, 刘亚荣, 赵珍, 陈京华. 基于CASA模型研究祁连山地区植被净初级生产力的时空变化[J]. 西北植物学报, 2014, 34(10):2085-2091.

    Zhang SY, Jia WX, Zhao YF, Liu YR, Zhao Z, Chen JH. Spatial-temporal variations of net primary productivity of Qilian Mountains vegetation based on CASA model[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(10):2085-2091.
    [10]
    李传华, 范也平, 曹红娟, 韩海燕. 基于CASA模型的植被第一性生产力人为影响定量研究——以石羊河流域为例[J].干旱区地理, 2018, 41(1):142-151.

    Li CH, Fan YP, Cao HJ, Han HY. Impact of human activities on net primary productivity based on the CASA model:a case study of the Shiyang River Basin[J]. Arid Land Geography, 2018, 41(1):142-151.
    [11]
    Rollinson CR, Liu Y, Raiho A, Moore DJP, McLachlan J, Bishop DA,et al. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America[J]. Global Change Biol, 2017, 23(7):2755-2767.
    [12]
    Sun ZG, Liu J, Tang HY. Application of a new model using productivity coupled with hydrothermal factors (PCH) for evaluating net primary productivity of grassland in southern China[J]. Solid Earth, 2017, 8(2):545-552.
    [13]
    孟元可, 叶许春, 徐力刚, 徐昔保, 范宏翔, 黄涛. 2000-2015年鄱阳湖区植被净初级生产力变化及驱动因素分析[J]. 湿地科学, 2018, 16(3):360-369.

    Meng YK, Ye XC, Xu LG, Xu XB, Fan HX, Huang T. Variation of net primary productivity of vegetation in Poyang Lake area from 2000 to 2015 and its influence factors[J]. Wetland Science, 2018, 16(3):360-369.
    [14]
    党海山, 张燕君, 张克荣, 江明喜, 张全发. 秦岭巴山冷杉种群结构与动态[J]. 生态学杂志, 2009, 28(8):1456-1461.

    Dang HS, Zhang YJ, Zhang KR, Jiang MX, Zhang QF. Population structure and its dynamics of Abies fargesii in Qinling Mountains[J]. Chinese Journal of Ecology, 2009, 28(8):1456-1461.
    [15]
    杨凤萍, 张硕新, 张安刚. 秦岭火地塘林区油松、巴山冷杉、青杄径向生长与气候因子的关系[C]//中国科学技术协会. 第16届中国科协年会:森林培育技术创新与特色资源产业发展学术研讨会论文集. 北京:中国林业出版社, 2014:1-8.
    [16]
    王晓亮, 方有为. 陕西牛背梁国家自然保护区巴山冷杉群落结构特征研究[J]. 陕西林业科技, 2014(5):11-14.

    Wang XL, Fang YW. The research of bashan fir community structure characteristics in Shaanxi Niubeiliang National Nature Reserve[J]. Shaanxi Forest Science and Techno-logy, 2014(5):11-14.
    [17]
    张俊瑶, 姚永慧, 索南东主, 郜丽静, 王晶, 张兴航. 基于垂直带谱的太白山区山地植被遥感信息提取[J]. 地球信息科学学报, 2019, 21(8):1284-1294.

    Zhang JY, Yao YH, Suonan DZ, Gao LJ, Wang J, Zhang XH. Mapping of mountain vegetation in Taibai Mountain based on mountain altitudinal belts with remote sensing[J]. Journal of Geo-information Science, 2019, 21(8):1284-1294.
    [18]
    李亮, 何晓军, 胡理乐, 李俊生. 1958-2008年太白山太白红杉林碳循环模拟[J]. 生态学报, 2013, 33(9):214-224.

    Li L, He XJ, Hu LL, Li JS. Simulation of the carbon cycle of Larix chinensis forest during 1958 and 2008 at Taibai Mountain, China[J]. Acta Ecologica Sinica, 2013, 33(9):214-224.
    [19]
    段仁燕, 王孝安, 黄敏毅, 涂云博, 汪超. 秦岭太白山巴山冷杉种内和种间竞争特性的研究[J]. 植物科学学报, 2007, 25(6):581-585.

    Duan RY, Wang XA, Huang MY, Tu YB, Wang C. Study on intraspecific and interspecific competition in Abies fargesii on Taibai Mountain[J]. Plant Science Journal, 2007, 25(6):581-585.
    [20]
    任学敏. 太白山主要植物群落数量分类及其物种组成和丰富度的环境解释[D]. 咸阳:西北农林科技大学, 2012:18-43.
    [21]
    翟丹平, 白红英, 秦进, 邓晨晖, 刘荣娟, 何红, 等. 秦岭太白山气温直减率时空差异性研究[J]. 地理学报, 2016, 71(9):1587-1985.

    Zhai DP, Bai HY, Qin J, Deng CH, Liu RJ, He H, et al. Temporal and spatial variability of air temperature lapse rates in Mt. Taibai, Central Qinling Mountains[J]. Acta Geographica Sinica, 2016, 71(9):1587-1985.
    [22]
    卫玮, 党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学, 2019, 55(5):11-19.

    Wei W, Dang KL. Spatial variation of the density of soil organic carbon in forest land on the southern slope of Qinling Mountains[J]. Scientia Silvae Sinicae, 2019, 55(5):11-19.
    [23]
    雷梅, 陈同斌, 冯立孝, 常庆瑞, 阎湘. 太白山北坡成土因素及不同土壤垂直带谱的比较[J]. 地理研究, 2004, 20(5):583-592.

    Lei M, Chen TB, Feng LX, Chang QR, Yan X. Soil formation factors and comparison among different altitudinal zonations of the soils on northern slope of the Taibai Mountains[J]. Geographical Research, 2004, 20(5):583-592.
    [24]
    陈煜, 许金石, 张丽霞, 郭垚鑫, 柴永福, 王茂, 等. 太白山森林群落和林下草本物种变化的环境解释[J]. 西北植物学报, 2016, 36(4):784-795.

    Chen Y, Xu JS, Zhang LX, Guo YX, Chai YF, Wang M, et al. Environmental interpretation of variations on forest community and understory herbaceous in Taibai Mountain, Shaanxi, China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(4):784-795.
    [25]
    雷明德. 陕西植被[M]. 北京:科学出版社, 1999:48-72.
    [26]
    Yuan QZ, Wu SH, Zhao DS, Dai EF, Chen L, Zhang L. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005[J]. J Geogr Sci, 2014, 24(1):3-17.
    [27]
    贾俊鹤, 刘会玉, 林振山. 中国西北地区植被NPP多时间尺度变化及其对气候变化的响应[J]. 生态学报, 2019, 39(14):5058-5069.

    Jia JH, Liu HY, Lin ZS. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change[J]. Acta Ecologica Sinica, 2019, 39(14):5058-5069.
    [28]
    陈斌, 王绍强, 刘荣高, 宋婷. 中国陆地生态系统NPP模拟及空间格局分析[J]. 资源科学, 2007, 29(6):45-53.

    Chen B, Wang SQ, Liu RG, Song T. Study on modeling and spatial pattern of net primary production in China's terrestrial ecosystem[J]. Resources Science, 2007, 29(6):45-53.
    [29]
    麦鸿坤, 肖坚红, 吴熙辰, 陈驰. 基于R语言的负荷预测ARIMA模型并行化研究[J]. 电网技术, 2015, 39(11):3216-3220.

    Mai HK, Xiao JH, Wu XC, Chen C. Research on ARIMA model parallelization in load prediction based on R language[J]. Power System Technology, 2015, 39(11):3216-3220.
    [30]
    张译, 郑新奇. 2000-2015年河北省林地时空变化特征及驱动力[J]. 水土保持研究, 2018, 25(2):269-273.

    Zhang Y, Zheng XQ. Spatiotemporal patterns an drivers of forest change in Hebei Province from 2000 to 2015[J].Research of Soil and Water Conservation, 2018, 25(2):269-273.
    [31]
    梁仁方. 基于BP神经网络模型和NAR动态神经网络模型的期货跨品种套利策略对比研究[D]. 杭州:浙江财经大学, 2016:15-21.
    [32]
    葛宇生. 基于NAR动态神经网络后验信息的概率水文预报[D]. 哈尔滨:东北农业大学, 2016:13-24.
    [33]
    王利平. 因子分析与NARX融合的个人所得税预测模型[D]. 重庆:重庆大学, 2018:19-36.
    [34]
    黄建风, 陆文聪. 基于小波-NAR神经网络的气象要素时间序列预测与天气指数彩虹期权估值[J]. 系统工程理论与实践, 2016, 36(5):1146-1155.

    Huang JF, Lu WC. Forecasting of meteorological time series and pricing of weather index rainbow options:A wavelet-NAR neural network model[J]. Systems Engineering-Theory & Practice, 2016, 36(5):1146-1155.
    [35]
    牛翔宇, 冯予. 缺失数据下广义非线性回归的经验似然及诊断[J]. 重庆工商大学学报(自然科学版), 2016, 33(6):15-21.

    Niu XY, Feng Y. Empirical likelihood and diagnosis of generalized nonlinear regression under data missing[J].Journal of Chongqing Technology and Business (Natural Sciences Edition), 2016, 33(6):15-21.
    [36]
    邓建明, 秦伯强, 王博雯. 广义可加模型在R中的快捷实现及蓝藻水华预测分析中的应用[J]. 生态学杂志, 2015, 34(3):835-842.

    Deng JM, Qin BQ, Wang BW. Quick implementing of generalized additive models using R and its application in blue-green algal bloom forecasting[J]. Chinese Journal of Ecology, 2015, 34(3):835-842.
    [37]
    邹丽丽, 陈晓翔, 何莹, 黎夏, 何执兼. 基于逻辑斯蒂回归模型的鹭科水鸟栖息地适宜性评价[J]. 生态学报, 2012, 32(12):3722-3728.

    Zou LL, Chen XX, He Y, Li X, He ZJ. Assessment of ardeidae waterfowl habitat suitability based on a binary logistic regression model[J].Acta Ecologica Sinica, 2012, 32(12):3722-3728.
    [38]
    李析男, 王宁, 梅亚东, 赵先进. NAR神经网络的应用与检验:以城市居民生活需水定额为例[J]. 灌溉排水学报, 2017, 36(11):122-128.

    Li XN, Wang N, Mei YD, Zhao XJ. Application and validation of nonlinear auto-regressive neural network model:Taking water supply to residential area as an example[J]. Journal of Irrigation and Drainage, 2017, 36(11):122-128.
    [39]
    林卓. 不同尺度下福建省杉木碳计量模型、预估及应用研究[D]. 福州:福建农林大学, 2016:88-106.
    [40]
    涂云博, 王孝安, 段仁燕. 秦岭太白山巴山冷杉种群结构研究[J]. 陕西师范大学学报(自然科学版), 2009, 37(3):75-80.

    Tu YB, Wang XA, Duan RY. Study on the structure of Abies fargesii population in Taibai Mountain of Qinling[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2009, 37(3):75-80.
    [41]
    刘建军, 令志哲. 太白山巴山冷杉林初步研究[J]. 西北林学院学报, 1995, 10(1):9-14.

    Liu JJ, Ling ZZ. A primary study on Farges Fir (Abies fargesii) forests in the Taibai Mountains[J]. Journal of Northwest Forestry University, 1995, 10(1):9-14.
    [42]
    王宇超, 周亚福, 王得祥. 秦岭南坡中段主要森林群落类型划分及环境梯度解释[J]. 生态环境学报, 2016, 25(6):965-972.

    Wang YC, Zhou YF, Wang DX. The quantitative classification and environmental interpretation of forest communities in the middle area of south slope of Qinling Mountains[J]. Ecology and Environmental Sciences, 2016, 25(6):965-972.
    [43]
    彭荣荣, 刘芸男, 杨小丽, 杨冬燕. 基于时间序列分析的单采血小板临床需求预测模型研究[J/OL]. 首都医科大学学报, 2020, 41(2):1-6. (2020-03-31)[2020-04-15]. https://kns.cnki.net/KCMS/detail/11.3662.R.20200329.2245.008.html.

    Peng RR, Liu YN, Yang XL, Yang DY. Study on clinical demand prediction model of apheresis platelets based on time series analysis[J/OL].Journal of Capital Medical University, 2020, 41(2):1-6. (2020-03-31)[2020-04-15]. https://kns.cnki.net/KCMS/detail/11.3662.R.20200329.2245.008.html.
    [44]
    刘立龙, 陈雨田, 黎峻宇, 田祥雨, 贺朝双. 活跃期区域电离层总电子短期预报及适用性分析[J].武汉大学学报(信息科学版), 2019, 44(12):1757-1764.

    Liu LL, Chen YT, Li JY, Tian XY, He CS. Short-term prediction and applicability analysis of regional ionospheric total electron content in active period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12):1757-1764.
    [45]
    赵义军, 张小轩, 商梦娇. 多元回归分析在温度预测中的应用及R实现[J]. 佳木斯大学学报(自然科学版), 2016, 34(6):1020-1025.

    Zhao YJ, Zhang XX, Shang MJ. The application of multiple regression analysis in the prediction of temperature and the realization of R[J].Journal of Jiamusi University (Natural Science Edition), 2016, 34(6):1020-1025.
    [46]
    王靖会, 吴玥, 臧妍宇, 陈云志, 王艳辉,闵伟红. 基于随机森林的相邻区域地理标志大米产地确证方法[J]. 吉林农业大学学报, 2019, 41(3):373-378.

    Wang JH,Wu Y, Zang YY, Chen YZ, Wang YH, Min WH. Origin confirmation of geographical indication rice in adjacent regions based on random forest[J].Journal of Jilin Agricultural University, 2019, 41(3):373-378.
    [47]
    汪翔, 何吉祥, 佘磊, 张静. 基于NAR神经网络对养殖水体亚硝酸盐预测模型的研究[J]. 渔业现代化, 2015, 42(4):30-34.

    Wang X, He JX, She L, Zhang J. Establishment of aquaculture water nitrite prediction model based on NAR neural network[J].Fishery Modernization, 2015, 42(4):30-34.
    [48]
    李鹏飞, 王青青, 毋建宏, 陈华雪. 基于BP神经网络、ARIMA和LS-SVM模型的集成预测研究:1978-2017年陕西省苹果产量实证[J/OL]. 江苏农业科学, 2020, 48(4):294-300. (2020-03-24)[2020-04-15]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDAUTO&filename=JSNY202004054&v=MTcwNDhITkhNcTQ5QVlJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZy-Q1VSN3FmWStkckZ5M2hVcnJNTHo3RmQ3RzQ=. Li PF, Wang QQ, Wu JH, Chen HX. Study on integrated prediction based on BP neural network,ARIMA and LS-SVM model:An empirical study of apple production in Shaanxi province from 1978 to 2017[J/OL]. Jiangsu Agricultural Sciences, 2020, 48(4):294-300. (2020-03-24)[2020-04-15]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDAUTO&filename=JSNY202004054&v=MTcwNDhITkhNcTQ5QVlJUjhlWDF-MdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FmWStkckZ5-M2hVcnJNTHo3RmQ3RzQ=.
  • Related Articles

    [1]Zhang Dong, Song Shuaishuai, Shi Hongwen, Wei Xinzeng, Jiang Mingxi. Impacts of environmental filtering and dispersal limitation on rare and endangered plant communities of the eastern margin of the Qinghai-Tibet Plateau, China[J]. Plant Science Journal, 2025, 43(2): 201-209. DOI: 10.11913/PSJ.2095-0837.24091
    [2]Wang Meng-Hao, Ran Hang, Liu Yan-Yan, Sun Hua-Yue, Cao Ya-Nan, Wang Hong-Wei, Li Jia-Mei. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal, 2023, 41(2): 149-158. DOI: 10.11913/PSJ.2095-0837.22161
    [3]Cao Guan-Long, Zou Dian-Yang, Zhou Run, Li Lang, Li Jie. A study on the phylogeny and species diversity of the genus Cryptocarya in China[J]. Plant Science Journal, 2021, 39(4): 349-357. DOI: 10.11913/PSJ.2095-0837.2021.40349
    [4]Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
    [5]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [6]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [7]HOU Rong, ZHANG Hua, YI Ling-Jun, LIU Jian-Gang, LÜ Rui, WANG Ying. Study on Epiphytic Bryophytes Species Diversity of Forest Ecosystems in the Ancient Rock Stream Periglacial Landform of the Liaoning Eastern Mountains[J]. Plant Science Journal, 2016, 34(6): 857-872. DOI: 10.11913/PSJ.2095-0837.2016.60857
    [8]ZHAO Zhi-Juan, LIU Guo-Xiang, HU Zheng-Yu. A New Combination Species of Freshwater Cladophorales and Its Phylogenetic Analysis[J]. Plant Science Journal, 2015, 33(3): 281-290. DOI: 10.11913/PSJ.2095-0837.2015.30281
    [9]WANG Chuan-Yi, GUO Bao-Lin. The Characteristics of the Frequently Used Nuclear Robosome Gene Spacers and Their Utilizations in Phylogenetic Study of Plants[J]. Plant Science Journal, 2008, 26(4): 417-423.
    [10]CHEN Shao-Feng, DONG Sui-Sui, WU Wei, SHI Su-Hua, ZHOU Pu-Hua. Phylogenetics of Triarrhena and Related Genera Based on ITS Sequence Data[J]. Plant Science Journal, 2007, 25(3): 239-244.
  • Cited by

    Periodical cited type(11)

    1. 李林霞,何兰君,席磊,冯子航,欧光龙. 中国南方松林地理替代分布规律及其气候主导因子研究. 西南林业大学学报(自然科学). 2024(01): 97-105 .
    2. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    3. 谢婧妍,贺晓慧,朱丽,郝瑞敏. 气候变化背景下云南沙棘在中国的潜在地理分布. 防护林科技. 2023(01): 24-29 .
    4. 赵鹏霞,杨旭,杨志玲,田朝霞,羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报. 2023(02): 285-297 .
    5. 周安晟,成彦丽,陈鸿,徐晨,张远兵. 基于MaxEnt模型预测含笑在中国的潜在适生区. 安徽科技学院学报. 2023(06): 19-27 .
    6. 唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼. 气候变化下中国主要生物燃油树种分布与变迁. 生态学报. 2023(24): 10156-10170 .
    7. 缪菁,王勇,王璐,许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测. 南京林业大学学报(自然科学版). 2021(03): 193-198 .
    8. 覃元艺,陈曦. 石栎属物种果实类型及其系统演化研究进展. 云南民族大学学报(自然科学版). 2021(04): 311-320 .
    9. 陈禹衡,陆双飞,毛岭峰. 黄檀属珍稀树种未来适宜区变化预测. 浙江农林大学学报. 2021(04): 837-845 .
    10. 张晓龙,邓童,罗乐,李进宇. 单叶蔷薇潜在适宜区预测及其渐危机制研究. 西北植物学报. 2021(09): 1570-1582 .
    11. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .

    Other cited types(4)

Catalog

    Article views (653) PDF downloads (736) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return