Advance Search
Wu Jing, Sheng Mao-Yin. Research progress in root ecology of karst vegetation in China[J]. Plant Science Journal, 2020, 38(4): 565-573. DOI: 10.11913/PSJ.2095-0837.2020.40565
Citation: Wu Jing, Sheng Mao-Yin. Research progress in root ecology of karst vegetation in China[J]. Plant Science Journal, 2020, 38(4): 565-573. DOI: 10.11913/PSJ.2095-0837.2020.40565

Research progress in root ecology of karst vegetation in China

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31660136), Project of Guizhou Science and Technology Fund (Qiankehe Jichu[2019]1224), Support Plan for Excellent Young Science and Technology Talents of Guizhou Province (Qiankehe Pingtai Rencai[2017]5638), and Support Plan for Science and Technology Top-notch Talents of Guizhou Higher Education Institutions (Qianjiaohe KY zi[2016]064).

More Information
  • Received Date: November 13, 2019
  • Revised Date: January 11, 2020
  • Available Online: October 31, 2022
  • Published Date: August 27, 2020
  • Traditional research on root ecology of vegetation in China has mainly focused on tropical, subtropical, temperate, arid, and semi-arid non-karst areas in the west of China. To date, little research has been conducted on the root ecology of vegetation in karst areas, and current understanding is relatively fragmented. In this paper, the vegetation habitat characteristics, root system characteristics (root biomass, architecture, chemical nutrients), effects of natural and human factors on root ecological characteristics, and relationship between vegetation root and vegetation succession, carbon cycle, and global change are reviewed. We also discuss future research directions and development trends of vegetation root systems in karst areas. This study aims to provide a reference for further research on karst vegetation root ecology in China.
  • [1]
    盛茂银, 熊康宁, 崔高仰, 刘洋. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J]. 生态学报, 2015, 35(2):434-448.

    Sheng MY, Xiong KN, Cui GY, Liu Y. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou, China[J]. Acta Ecologica Sinica, 2015, 35(2):434-448.
    [2]
    Wang LJ, Wang P, Sheng MY, Tian J. Ecological stoichiometry and environmental influencing factors of soil nutrients in the karst rocky desertification ecosystem, southwest China[J]. Glob Ecol Conserv, 2018, 30(2):400-408.
    [3]
    罗光杰, 李阳兵, 王世杰, 程安云, 丹文丽. 岩溶山区景观多样性变化的生态学意义对比:以贵州四个典型地区为例[J]. 生态学报, 2011, 31(14):3882-3889.

    Luo GJ, Li YB, Wang SJ, Cheng AY, Dan WL. Comparison of ecological significance of landscape diversity changes in karst mountains:a case study of 4 typical karst area in Guizhou province[J]. Acta Ecologica Sinica, 2011, 31(14):3882-3889.
    [4]
    张军以, 戴明宏, 王腊春, 苏维词, 曹立国. 西南喀斯特石漠化治理植物选择与生态适应性[J]. 地球与环境, 2015, 43(3):269-278.

    Zhang JY, Dai MH, Wang LC, Sui WC, Cao LG. Plant selection and their ecological adaptation for rocky desertification control in karst region in the southwest China[J]. Earth and Environment, 2015, 43(3):269-278.
    [5]
    刘立斌, 钟巧连, 倪健. 基于生物量回归方程估算黔中喀斯特常绿落叶阔叶混交林木本植物的根系生物量[J]. 生态学报, 2018, 38(24):8726-8732.

    Liu LB, Zhong QL, Ni J. Allometric function-based root biomass estimate of woody plants in a karst evergreen and deciduous broadleaf and mixed forest incentral Guizhou province, southwestern China[J]. Acta Ecologica Sinica, 2018, 38(24):8726-8732.
    [6]
    潘晓迪, 张颖, 邵萌, 马黎明, 郭新宇. 作物根系结构对干旱胁迫的适应性研究进展[J]. 中国农业科技导报, 2017, 19(2):51-58.

    Pan XD, Zhang Y, Shao M, Ma NM, Guo XY. Research progress on adaptive responses of crop root structure to drought stress[J]. Journal of Agricultural Science and Technoligy, 2017, 19(2):51-58.
    [7]
    苏樑, 宋同清, 杜虎, 曾馥平, 王华, 等. 喀斯特峰丛洼地不同植被恢复阶段优势种根系构型特征[J]. 西北植物学报, 2018, 38(1):150-157.

    Su L, Song TQ, Du H, Zeng FP, Wang H, et al. Root architecture of the dominant species in various vegetation restoration processes in karst peak-cluster dapression[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(1):150-157.
    [8]
    Jackson RB, Mooney HA, Schulze ED. A global budget for fine root biomass, surface area, and nutrient contents[J]. P Natl Acad Sci USA, 1997, 94(14):7362-7366.
    [9]
    Vogt KA, Grier CC, Vogt DJ. Production, turnover, and nutrient dynamics of above and belowground detritus of world forests[J]. Adv Ecol Res, 1986, 15(15):303-377.
    [10]
    Wang WJ, Mo QF, Han XG, Hui DF, Shen WJ. Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest[J]. Biol Fert Soils, 2019, 55(7):723-736.
    [11]
    Parts K, Tedersoo L, Schindlbacher A. Acclimation of fine root systems to soil warming:comparison of an experimental setup and a natural soil temperature gradient[J]. Acta Physiol, 2019, 22(3):457-472.
    [12]
    单立山. 西北典型荒漠植物根系形态结构和功能及抗旱生理研究[D]. 兰州:甘肃农业大学, 2013.
    [13]
    Trumbore SE, Gaudinski JB. The secret lives of roots[J]. Science, 2003, 302(5649):1344-1345.
    [14]
    王浩, 黄晨璐, 杨方社, 李怀恩. 砒砂岩区沙棘根系的生境适应性[J].应用生态学报, 2019, 30(1):157-164.

    Wang H, Huang CL, Yang FS, Li HE. Root habitat flexibi-lity of seabuckthorn in the pisha sandstone area[J]. Chinese Journal of Applied Ecology, 2019, 30(1):157-164.
    [15]
    刘雯雯. 喀斯特植被恢复不同阶段土壤微生物组成及氮磷土壤酶对生境响应[D]. 贵阳:贵州大学, 2019.
    [16]
    Nie YP, Chen HS, Wang KL, Ding YL, Ding YL. Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of southwest China[J]. Plant Ecol, 2014, 215(10):1099-1109.
    [17]
    盛茂银, 刘洋, 熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报, 2013, 33(19):6303-6313.

    Sheng MY, Liu Y, Xiong KN. Response of soil physical-chemical properties to rocky desertification succession in south China karst[J]. Acta Ecologica Sinica, 2013, 33(19):6303-6313.
    [18]
    李阳兵, 王世杰, 王济. 岩溶生态系统的土壤特性及其今后研究方向[J]. 中国岩溶, 2006(4):285-289.

    Li YB, Wang SJ, Wang J. Soil properties in karst ecosystem and further study[J]. Carsologica Sinica, 2006(4):285-289.
    [19]
    Pernot C, Thiffault N, Desrochers A. Contribution of adventitious vs initial roots to growth and physiology of black spruce seedlings[J]. Physiol Plantarum, 2019, 165(1):29-38.
    [20]
    罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 等. 我国西南山地喀斯特植被的根系生物量初探[J]. 植物生态学报, 2010, 34(5):611-618.

    Luo DH, Xia J, Yuan JW, Zhang ZH, Zhu JD, et al. Root biomass of karst vegetation in a mountainous area of southwestern China[J]. Chinese Journal of Plant Ecology, 2010, 34(5):611-618.
    [21]
    Liu LB, Wu YY, Hu G, Zhang ZH, Cheng AY, et al. Biomass of karst evergreen and deciduous broadleaved mixed forest in central Guizhou province, southwestern China:a comprehensive inventory of a 2 ha plot[J]. Silva Fenn, 2016, 50(3):1492.
    [22]
    Ni J, Luo DH, Xia J, Zhang ZH, Hu G. Vegetation in karst terrain of southwestern China allocates more biomass to roots[J]. Solid Earth, 2015, 6(3):799-810.
    [23]
    宋海燕, 张静, 李素慧, 梁千慧, 李若溪, 等. 基于容器分区处理探究黑麦草生长对喀斯特不同土壤生境和水分的响应[J]. 生态学报, 2019, 39(10):3557-3565.

    Song HY, Zhang J, Li SH, Liang QH, Li RX, et al. Growth response of lolium perenne lunder different soil habitats and water conditions based on container partition in a karst area[J]. Acta Ecologica Sinica, 2019, 39(10):3557-3565.
    [24]
    Fitter AH, Stickland TR. Architectural analysis of plant root systems:Ⅲ. Studies on plants under field conditions[J]. New Phytol, 1992, 121(2):243-248.
    [25]
    Oppelt AL, Kurth W, Jentschke G, Godbold DL. Contrasting rooting patterns of some arid-zone fruit tree species from BotswanaⅠ. Fine root distribution[J]. Agroforest Syst, 2005, 64:1-11.
    [26]
    黄同丽, 唐丽霞, 陈龙, 张乔艳. 喀斯特区3种灌木根系构型及其生态适应策略[J]. 中国水土保持科学, 2019, 17(1):89-94.

    Huang TL, Tang LX, Cheng L, Zhang QY. Root architecture and ecological adaptation strategy of three shrubs in karst area[J]. Science of Soil and Water Conservation, 2019, 17(1):89-94.
    [27]
    Ge YC, Fang X, Liu W, Sheng LH, Xu L. Adventitious lateral rooting:the plasticity of root system architecture[J]. Physiol Plantarum, 2018, 165(1):434-448.
    [28]
    王浩. 砒砂岩区不同生境条件下沙棘根系构型特征研究[D]. 西安:西北大学, 2018.
    [29]
    何广志, 陈亚宁, 陈亚鹏, 王日照. 柽柳根系构型对干旱的适应策略[J]. 北京师范大学学报(自然科学版), 2016, 52(3):277-282.

    He GZ, Chen YN, Chen YP, Wang RZ. Adaptive strategy of Tamarix spp. root architecture in arid environment[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(3):277-282.
    [30]
    杜有新, 李恋卿, 潘根兴, 胡忠良, 王新洲. 贵州中部喀斯特山地三种优势灌木养分分布[J]. 生态环境学报, 2010, 19(3):626-630.

    Du YX, Li LQ, Pan GX, Hu ZL, Wang XZ. Distribution patterns of main nutrients in three dominant shrubs in Karst mountainous areas in central Guizhou, China[J]. Ecology and Environmental Sciences, 2010, 19(3):626-630.
    [31]
    马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 等. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子[J]. 植物生态学报, 2015, 39(2):159-166.

    Ma YZ, Zhong QL, Jin BJ, Lu HD, Guo BJ, et al. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China[J]. Chinese Journal of Plant Ecology, 2015, 39(2):159-166.
    [32]
    Wang ZQ, Yu KL, Lv SQ, Niklas KJ, Mipam TD, et al. The scaling of fine root nitrogen versus phosphorus in terrestrial plants:a global synthesis[J]. Funct Ecol, 2019, 33(11):159-166.
    [33]
    徐立清, 崔东海, 王庆成, 张勇,马双娇, 等. 张广才岭西坡次生林不同生境胡桃楸幼树根系构型及细根特征[J]. 应用生态学报, 2020, 31(2):373-380.

    Xu LQ, Cui DH, Wang QC, Zhang Y, Ma SJ, et al. Root architecture and fine root characteristics of Juglans mandshurica in different habitats in the secondary forest on the west slope of Zhangguangcailing, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2):373-380.
    [34]
    李金波, 李诗刚, 宋桂龙, 濮阳雪华, 薛博晗, 等. 砷胁迫对黑麦草根系形态及养分吸收的影响[J]. 草业科学, 2018, 35(6):1385-1392.

    Li JB, Li SG, Song GL, Pu YXH, Xue BH, et al. Effect of arsenic stress on root morphological paramenters and absorption anutrient elements in ryegrass[J]. Pratacutural Science, 2018, 35(6):1385-1392.
    [35]
    方瑛, 安韶山, 马任甜. 云雾山不同恢复方式下草地植物与土壤的化学计量学特征[J]. 应用生态学报, 2017, 28(1):80-88.

    Fang Y, An SS, Ma RT. Ecological stoichiometric characteristics of plants and soil in grassland under different restoration types in Yunwu Mountain, China[J]. Chinese Journal of Applied Ecology, 2017, 28(1):80-88.
    [36]
    张海东, 汝海丽, 焦峰, 薛超玉, 郭美丽. 黄土丘陵区退耕时间序列梯度上草本植被群落与土壤C、N、P、K化学计量学特征[J]. 环境科学, 2016, 37(3):1128-1138.

    Zhang HD, Ru HL, Jiao F, Xue CY, Guo ML. C,N,P,K stoichiometric characteristic of leaves, root and soil in differentabandoned years in loess plateau[J]. Environmental Science, 2016, 37(3):1128-1138.
    [37]
    胥晏. 贵州喀斯特生态脆弱区圆果化香种群更新特性研究[D]. 贵阳:贵州师范大学, 2019.
    [38]
    王元素, 洪绂曾, 蒋文兰, 王堃. 喀斯特地区红三叶混播草地群落对长期适度放牧的响应[J]. 生态环境, 2007(1):117-124.

    Wang YS, Hong FZ, Jiang WL, Wang K. Responses of trifolium pratense mixed communities to long-term moderate grazing in karst region[J]. Ecology and Environment, 2007(1):117-124.
    [39]
    丁磊. 基于喀斯特地区水资源高效利用的节水灌溉技术初探[D]. 贵阳:贵州师范大学, 2018.
    [40]
    苏樑, 宋同清, 杜虎, 曾馥平, 王华, 等. 喀斯特峰丛洼地不同植被恢复阶段细根生物量、形态特征及其影响因素[J]. 应用生态学报, 2018, 29(3):783-789.

    Su L, Song TQ, Du H, Zeng FP, Wang H, et al. Biomass and morphological characteristics of fine roots and their affecting factors in different vegetation restoration stages in depressions between karst hills[J]. Chinese Journal of Applied Ecology, 2018, 29(3):783-789.
    [41]
    Yu YF, He TG, Song TQ, Du H, Wei CY, et al. Stoichiometric characteristics of vegetation successional stages in karst area of northwest Guangxi[J]. Journal of Southern Agriculture, 2018, 49(3):440-447.
    [42]
    Crookshanks M, Broadmeadow M, Taylor G. Elevated CO2 and root growth:contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris[J]. New Phytol, 2010, 138(2):241-250.
    [43]
    Ellsworth PZ, Sternberg LSL. Linking soil nutrient availabi-lity, fine root production and turnover, and species composition in a seasonally dry plant community[J]. Plant Soil, 2019, 442:49-63.
    [44]
    Prior SA, Runion GB, Torbert HA. Sour orange fine root distribution after seventeen years of atmospheric CO2 enrichment[J]. Agr Forest Meteorol, 2012, 162-163:85-90.
    [45]
    Canadell J, Jackson RB, Ehleringer JR, Schulze SD. Maximum rooting depth of vegetation types at the global scale[J]. Oecologia, 1996, 108(4):583-595.
    [46]
    Kou L, Jiang L, Fu X, Dai X, Wang H, et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations[J]. New Phytol, 2018, 218(4):115-123.
    [47]
    Schulze ED, Mooney HA, Sala OE, Jobbagy E, Buchmann N, et al. Rooting depth, water availability, and vegetation cover along an aridity gradient in patagonia[J]. Oecologia, 1996, 108(3):503-511.
    [48]
    胡琪娟, 王霖娇, 盛茂银. 植物细根生产和周转研究进展[J]. 世界林业研究, 2019, 32(2):29-34.

    Hu QJ, Wang LJ, Sheng MY. Research progress of plant fine root production and turnover[J]. World Forestry Research, 2019, 32(2):29-34.
    [49]
    尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究:问题与展望[J]. 植物生态学报, 2018, 42(11):1055-1070.

    Yi HJ, Zhang ZL, Liu Q. Root exudates and their ecological consequences in forest ecosystems:problems and perspective[J]. Chinese Journal of Plant Ecology, 2018, 42(11):1055-1070.
  • Related Articles

    [1]Li Lingyan, Wang Bin, Huang Fuzhao, Li Jianxing, Guo Yili, Li Dongxing, Xiang Wusheng, Lu Fang, Wen Shujun, Lu Shuhua, Li Xiankun. Distribution characteristics and influencing factors of random framework in a northern tropical karst seasonal rainforest[J]. Plant Science Journal, 2024, 42(6): 717-725. DOI: 10.11913/PSJ.2095-0837.23388
    [2]Cai Yuan-Bao, Yang Xiang-Yan. Codon usage bias and its influencing factors in the chloroplast genome of Macadamia integrifolia Maiden & Betche[J]. Plant Science Journal, 2022, 40(2): 229-239. DOI: 10.11913/PSJ.2095-0837.2022.20229
    [3]Wang Yu-Chen, Wang Wen-Juan, Zhong Yue-Ming, Lei Shan-Qing, Li Jing-Wen. Study on the foraging behavior of clonal roots and its influencing factors in Populus euphratica Oliv.[J]. Plant Science Journal, 2020, 38(3): 410-417. DOI: 10.11913/PSJ.2095-0837.2020.30410
    [4]Xie Cai-Xiang, Zhang Qin, Bai Guang-Yu. Ecological characteristics and regionalization of Xanthoceras sorbifolia Bunge, a woody energy plant[J]. Plant Science Journal, 2018, 36(2): 229-236. DOI: 10.11913/PSJ.2095-0837.2018.20229
    [5]GUO Lian-Jin, XUE Ping-Ping, SHAO Xing-Hua, TIAN Yu-Qing, XIAO Zhi-Peng. Growth Characteristics and Influencing Factors of Emmenopterys henryi Root Sprouts[J]. Plant Science Journal, 2015, 33(2): 165-175. DOI: 10.11913/PSJ.2095-0837.2015.20165
    [6]WU Xian, LIAO Jian-Xiong, GAN Qi-Liang, WU Gang. Influence of Environmental Factors on Seed Germination and Seedling Formation of Primula filchnerae[J]. Plant Science Journal, 2011, 29(2): 212-217.
    [7]LI Wei, WU Geng, YU Long-Jiang, LIU Yan, XIA Kun, LI Mao-Teng. Comparative Studies on Transpiration Characteristics of Vitex negundo at Different Geomorphological Positions at Guilin Karst Experimental Site[J]. Plant Science Journal, 2007, 25(3): 316-319.
    [8]ZHANG Le-Hua, LIU Xiang-Ping, WANG Kai-Hong, ZHAO Xi-Hua, WANG Zhao-Hong, LI Xiao-Hua. Factors Influencing Seed Germination and Seedling Survival of Rhododendron Subgenus Hymenanthes[J]. Plant Science Journal, 2007, 25(2): 178-184.
    [9]HUANG Xuan, XU Zi-Qin, HAO Jian-Guo, LI Jing. Factors Affecting Wheat(Triticum aestivum L.)Transformation Mediated by Biolistic Bombardment[J]. Plant Science Journal, 2004, 22(2): 111-115.
    [10]Xia Renxue, Peng Shuang, Chen Guilin, Hu Shiquan. STUDIES ON THE FACTORS INFLUENCING POLLEN GERMINATION OF CASTANEA MOLLISSIMA BL.[J]. Plant Science Journal, 1989, 7(4): 351-355.
  • Cited by

    Periodical cited type(8)

    1. 师雪淇,程金花,管凝,侯芳,沈子雅. 喀斯特地区典型植被根系对优先流的影响. 水土保持研究. 2024(05): 73-83 .
    2. 庞榆,贺同鑫,孙建飞,宁文彩,裴广廷,胡宝清,王斌. 北热带喀斯特森林优势树种细根生物量估算模型构建. 植物生态学报. 2024(10): 1312-1325 .
    3. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    4. 吴静,盛茂银,肖海龙,郭超,王霖娇. 西南喀斯特石漠化环境适生植物细根构型及其与细根和根际土壤养分计量特征的相关性. 生态学报. 2022(02): 677-687 .
    5. 林伟山,德科加,向雪梅,钱诗祎,魏希杰,冯廷旭. 天然草地植被-土壤系统碳、氮、磷(钾)库的时空分布格局研究进展. 青海畜牧兽医杂志. 2022(02): 45-51+68 .
    6. 杨慧,宁静,马洋,周孟霞,曹建华. 西南岩溶区植被碳循环研究进展. 广西植物. 2022(06): 903-913 .
    7. 薛建辉,周之栋,吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展. 南京林业大学学报(自然科学版). 2022(06): 135-145 .
    8. 张新生,卢杰. 根系生物量及其对根际生态系统响应的研究进展. 江苏农业科学. 2021(17): 39-45 .

    Other cited types(9)

Catalog

    Article views (708) PDF downloads (632) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return