Citation: | Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671 |
[1] |
张松, 黄波, 夏学峰, 孙子荣. 蛋白质亚细胞定位的生物信息学研究[J]. 生物化学与生物物理进展, 2007, 34(6):573-579.
Zhang S, Huang B, Xia XF, Sun ZY. Bioinformatics research in subcellular localization of protein[J]. Progress in Biochemistry and Biophysics, 2007, 34(6):573-579.
|
[2] |
王颜, 那杰. 植物细胞中叶绿体蛋白质的亚细胞定位方法[J]. 植物研究, 2020, 9(3):268-273.
Wang Y, Na J. Progress on methods of subcellular localization of chloroplast protein in plant cells[J]. Botanical Research, 2020, 9(3):268-273.
|
[3] |
李立奇, 万瑛. 蛋白质的亚细胞定位预测研究进展[J]. 免疫学杂志, 2009, 25(5):602-604.
Li LQ, Wang Y. Advancement of predicting protein subcellular localization sites[J]. Immunological Journal, 2009, 25(5):602-604.
|
[4] |
Xiong E, Zheng CY, Wu XL, Wang W. Protein subcellular location:the gap between prediction and experimentation[J]. Plant Mol Biol Rep, 2016, 34:52-61.
|
[5] |
Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, et al. SUBA3:a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis[J]. Nucleic Acids Res, 2013, 41:1185-1191.
|
[6] |
邢浩然, 刘丽娟,刘国振. 植物蛋白质的亚细胞定位研究进展[J]. 华北农学报, 2006, 21(S):1-6.
Xing HR, Liu LJ, Liu GZ. Advancement of protein subcellular localization in plants[J]. Acta Agricultire Boreali-Sinica, 2006, 21(S):1-6.
|
[7] |
Mehrabad EM, Hassanzadeh R, Eslahchi C. PMLPR:A novel method for predicting subcellular localization based on recommender systems[J]. Sci Rep, 2018, 8:12006.
|
[8] |
Emanuelsson O, Nielsen H, von Heijne G. ChloroP. A neural network-based method for predicting chloroplast transit peptides and their cleavage sites[J]. Protein Sci, 1999, 8:978-984.
|
[9] |
Hawkins J, Davis L, Boden M. Predicting nuclear localization[J]. J Proteome Res, 2007, 6:1402-1409.
|
[10] |
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences[J]. Eur J Biochem, 1996, 241:779-786.
|
[11] |
Schein AI, Kissinger JC, Ungar LH. Chloroplast transit peptide prediction:a peek inside the black box[J]. Nucleic Acids Res, 2001, 29:82.
|
[12] |
Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence[J]. J Mol Biol, 2003, 328:581-592.
|
[13] |
Mitschke J, Fuss J, Blum T, Hoglund A, Reski R, et al. Prediction of dual protein targeting to plant organelles[J]. New Phytol, 2009, 183:224-235.
|
[14] |
Tamura T, Akutsu T. Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition[J]. BMC Bioinformatics, 2007, 8:466.
|
[15] |
Guda C, Guda P, Fahy E, Subramaniam S. MITOPRED:a web server for the prediction of mitochondrial proteins[J]. Nucleic Acids Res, 2004, 32:372-374.
|
[16] |
Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction[J]. Bioinformatics, 2001,17:721-728.
|
[17] |
Pierleoni A, Martelli PL, Fariselli P, Casadio R. BaCelLo:a balanced subcellular localization predictor[J]. Bioinformatics, 2006, 22:408-416.
|
[18] |
Hawkins J, Boden M. Detecting and sorting targeting peptides with neural networks and support vector machines[J]. J Bioinf Comput Biol, 2006, 4:1-18.
|
[19] |
Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of N-terminal protein sorting signals[J]. Bioinformatics, 2002, 18:298-305.
|
[20] |
Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. PredSL:a tool for the N-terminal sequence-based prediction of protein subcellular localization[J]. Genom Proteom Bioinf, 2006, 4:48-55.
|
[21] |
Matsuda S, Ver JP, Saigo H, Ueda N, Toh H, Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines[J]. Protein Sci, 2005, 14:2804-2813.
|
[22] |
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. J Mol Biol, 2000, 300(4):1005-1016.
|
[23] |
Small I, Peeters N, Legeai F, Lurin C. Predotar:a tool for rapidly screening proteomes for N-terminal targeting sequences[J]. Proteomics, 2004, 4(6):1581-1590.
|
[24] |
Niu B, Jin YH, Feng KY, Lu WC, Cai YD, Li GZ. Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins[J]. Mol Divers, 2008, 12:41-45.
|
[25] |
Brady S, Shatkay H. EpiLoc:a (working) text-based system for predicting protein subcellular location[J]. Pac Symp Biocomput, 2008, 13:604-615.
|
[26] |
Briesemeister S, Rahnenfuhrer J, Kohlbacher O. YLoc-an interpretable web server for predicting subcellular localization[J]. Nucleic Acids Res, 2010, 38:497-502.
|
[27] |
Blum T, Briesemeister S, Kohlbacher O. MultiLoc2:integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction[J]. BMC Bioinformatics, 2009,10:274.
|
[28] |
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. WoLF PSRT:protein localization predictor[J]. Nucleic Acids Res, 2007, 35:585-587.
|
[29] |
Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, et al. LocTree3 prediction of localization[J]. Nucleic Acids Res, 2014, 42:W350-W355.
|
[30] |
Chou KC, Shen HB. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5:e11335.
|
[31] |
Yu CS, Chen YC, Lu CH, Hwang JK:prediction of protein subcellular localization[J]. Proteins, 2006, 64:643-651.
|
[32] |
Armenteros JJA, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc:prediction of protein subcellular localization using deep learning[J]. Bioinformatics, 2017, 33(21):3387-3395.
|
[33] |
Liu YL, Cao D, Ma LL, Jin XF, Yang PF, et al. TMT-based quantitative proteomics analysis reveals the response of Camellia sinensis to fluoride[J]. J proteomics, 2016, 176:71-81.
|
[34] |
San Clemente H, Jamet E. WallProtDB, a database resource for plant cell wall proteomics[J]. Plant Methods, 2015, 11(1):2.
|
[35] |
Day A, Fénart S, Neutelings G, Hawkins S, Rolando C, et al. Identification of cell wall proteins in the flax (Linum usitatissimum) stem[J]. Proteomics, 2013, 13(5):812-825.
|
[36] |
林珲, 朱海生, 温庆放, 黄丽放. 花椰菜BobACT基因的克隆及其作为内参基因的研究[J]. 植物遗传资源学报, 2019, 20(3):781-789.
Lin H, Zhu HS, Wen QF, Huang LF. Molecular cloning of actin gene and study on this gene as reference gene in cauliflower (Brassica oleracea L. var. botrytis L.)[J]. Journal of Plant Genetic Resources, 2019, 20(3):781-789.
|
[37] |
Sundaravelpandian K, Gang-Ping X, Rae AL, Donna G, Bonnett GD, et al. Overexpression of TaCML20, a calmodulin-like gene, enhances water soluble carbohydrate accumulation and yield in wheat[J]. Physiol Plantarum, 2018, 165(4):790-799.
|
[38] |
Ming R, Vanburen R, Liu Y, Yang M, Han Y. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)[J]. Genome Bio, 2013, 14(5):R41.
|
[39] |
Nielsen H, Engelbrecht J, von Heijne SBG. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites[J]. Protein Eng, 1997, 10:1-6.
|
[40] |
Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R. Plant secretome:unlocking secrets of the secreted proteins[J]. Proteomics, 2010, 10(4):1-29.
|
[41] |
Foster LJ, de Hoog C, Zhang YL, Zhang Y, Xie XH, et al. A mammalian organelle map by protein correlation profiling[J]. Cell, 2006, 125(1):187-199.
|
[42] |
Liu YL, Li M, Han C, Wu FX, Tu BK, et al. Comparative proteomic analysis of rice shoots exposed to arsenate[J]. J Integr Plant Biol, 2013, 55(9999):1-14.
|
[1] | Zhu Kai, Fan Yingxuan, Zuo Qihui, Tan Siyu, Liu Fenwu, Zhang Jian, Qin Junmei, Gao Lina. Photosynthetic limitation in soybean in response to soil water-nitrogen interactions and its relationship with leaf water use efficiency[J]. Plant Science Journal, 2024, 42(5): 634-643. DOI: 10.11913/PSJ.2095-0837.24036 |
[2] | Li Su-Hui, Chen Jin-Yi, Wang Jia-Min, Song Hai-Yan, Zhang Jing, Tao Jian-Ping, Liu Jin-Chun. Growth response of two annual herbs to karst soil depth and water supply[J]. Plant Science Journal, 2021, 39(3): 258-267. DOI: 10.11913/PSJ.2095-0837.2021.30258 |
[3] | Chen Mei-Yan, Zhao Ting-Ting, Peng Jue, Zhang Peng, Han Fei, Liu Xiao-Li, Zhong Cai-Hong. Multivariate analysis of relationship between soil nutrients and fruit quality in ‘Donghong’ kiwifruit (Actinidia chinensis var. chinensis) orchards[J]. Plant Science Journal, 2021, 39(2): 193-200. DOI: 10.11913/PSJ.2095-0837.2021.20193 |
[4] | Guan Shou-Peng, Chen Fang-Qing, Lü Kun, Zhou Ju-Mei, Xia Ping-Juan. Responses of biomass and components of Myricaria laxiflora seedlings to simulated soil water level changes[J]. Plant Science Journal, 2019, 37(4): 485-494. DOI: 10.11913/PSJ.2095-0837.2019.40485 |
[5] | DOU Xiao-Lin, LI Ming, WANG Wei-Bo, ZHANG Quan-Fa, CHENG Xiao-Li. Changes in Soil Nutrients in Different Eroded Soils in Pinus massoniana Forest Ecosystems in Fujian Province,China[J]. Plant Science Journal, 2012, (2): 161-168. DOI: 10.3724/SP.J.1142.2012.20161 |
[6] | LI Qing-Yu, ZHONG Zhang-Cheng, HE Yue-Jun. Effects of Soil Nutrients on Plasticity of Floral Characteristics in Iris japonica Thunb.[J]. Plant Science Journal, 2005, 23(6): 564-567. |
[7] | Li Zhi'an, Wang Bosun, Lin Yongbiao, Zeng Youte. A REVIEW OF STUDY ON NUTRIENT RESORPTION OF PLANT[J]. Plant Science Journal, 2000, 18(3): 229-236. |
[8] | Hou Songsheng, Li Xinming, Li Honglin, Wu Yulan. STUDIES ON PHYSIOLOGICAL AND BIOCHEMICAL CHARACTER IN SUSPENSION CULTURE OF BERBEBIS JULIANAE SCHNEID CELLS Ⅴ.CELL GROWTH,RESPIRATION,ABSORPTION AND CONSUMPTION OF MAJOR NUTRITIONAL ELEMENTS[J]. Plant Science Journal, 1995, 13(2): 163-166. |
[9] | Shen Yinwu, Huang Zebo, Zhu Yunzhi, Wang Qianlin. THE ANALYSIS OF NUTRIENT COMPOSITION OF ANABAENA POWDER[J]. Plant Science Journal, 1994, 12(1): 61-64. |
[10] | Ding Zhaohua. NUTRIENT FILM TECHNIQUE[J]. Plant Science Journal, 1986, 4(3): 303-309. |
1. |
张仕兰,王屿岑,刘文亮. 海三棱藨草及其近缘种的DNA条形码研究. 广西植物. 2024(04): 699-709 .
![]() | |
2. |
石佳,李文庭,康帅,张南平,马双成. 果实类药材的性状和显微鉴定研究现状. 药物分析杂志. 2021(08): 1288-1296 .
![]() |