Advance Search
Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671
Citation: Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671

Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.

Funds: 

This work was supported by a grant from the Natural Science Foundation of Hubei Province (2019CFB600).

More Information
  • Received Date: April 12, 2020
  • Revised Date: June 26, 2020
  • Available Online: October 31, 2022
  • Published Date: October 27, 2020
  • Several predictors of subcellular localization have been developed, with high-throughput and rapid prediction of protein subcellular localization successfully achieved. However, these predictors also have some disadvantages. Here, using 500 proteins identified from the proteome of Camellia sinensis (L.) O. Ktze. as a dataset, the reliability and sensitivity of subcellular localization predictors were compared, including with TargetP, WoLF PSORT, LocTree, and Plant-mPLoc. Results demonstrated that the prediction reliability of the four predictors exceeded 80%, in the order TargetP > LocTree > WoLF PSORT > Plant-mPLoc. Moreover, among the four predictors, LocTree showed the highest sensitivity for cytoplasmic and secretory proteins, but lowest for chloroplast proteins; Plant-mPLoc was most sensitive to nucleoproteins and most insensitive to cytoplasmic proteins; TargetP was most sensitive to chloroplast proteins, but could only distinguish three subcellular organelles; and WoLF PSORT showed high insensitivity to secretory proteins but high recognition of non-secretory proteins. Based on the aforementioned results, we discuss potential uses of the four predictors, which will provide a reference for high-efficiency prediction of protein subcellular localization.
  • [1]
    张松, 黄波, 夏学峰, 孙子荣. 蛋白质亚细胞定位的生物信息学研究[J]. 生物化学与生物物理进展, 2007, 34(6):573-579.

    Zhang S, Huang B, Xia XF, Sun ZY. Bioinformatics research in subcellular localization of protein[J]. Progress in Biochemistry and Biophysics, 2007, 34(6):573-579.
    [2]
    王颜, 那杰. 植物细胞中叶绿体蛋白质的亚细胞定位方法[J]. 植物研究, 2020, 9(3):268-273.

    Wang Y, Na J. Progress on methods of subcellular localization of chloroplast protein in plant cells[J]. Botanical Research, 2020, 9(3):268-273.
    [3]
    李立奇, 万瑛. 蛋白质的亚细胞定位预测研究进展[J]. 免疫学杂志, 2009, 25(5):602-604.

    Li LQ, Wang Y. Advancement of predicting protein subcellular localization sites[J]. Immunological Journal, 2009, 25(5):602-604.
    [4]
    Xiong E, Zheng CY, Wu XL, Wang W. Protein subcellular location:the gap between prediction and experimentation[J]. Plant Mol Biol Rep, 2016, 34:52-61.
    [5]
    Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, et al. SUBA3:a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis[J]. Nucleic Acids Res, 2013, 41:1185-1191.
    [6]
    邢浩然, 刘丽娟,刘国振. 植物蛋白质的亚细胞定位研究进展[J]. 华北农学报, 2006, 21(S):1-6.

    Xing HR, Liu LJ, Liu GZ. Advancement of protein subcellular localization in plants[J]. Acta Agricultire Boreali-Sinica, 2006, 21(S):1-6.
    [7]
    Mehrabad EM, Hassanzadeh R, Eslahchi C. PMLPR:A novel method for predicting subcellular localization based on recommender systems[J]. Sci Rep, 2018, 8:12006.
    [8]
    Emanuelsson O, Nielsen H, von Heijne G. ChloroP. A neural network-based method for predicting chloroplast transit peptides and their cleavage sites[J]. Protein Sci, 1999, 8:978-984.
    [9]
    Hawkins J, Davis L, Boden M. Predicting nuclear localization[J]. J Proteome Res, 2007, 6:1402-1409.
    [10]
    Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences[J]. Eur J Biochem, 1996, 241:779-786.
    [11]
    Schein AI, Kissinger JC, Ungar LH. Chloroplast transit peptide prediction:a peek inside the black box[J]. Nucleic Acids Res, 2001, 29:82.
    [12]
    Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence[J]. J Mol Biol, 2003, 328:581-592.
    [13]
    Mitschke J, Fuss J, Blum T, Hoglund A, Reski R, et al. Prediction of dual protein targeting to plant organelles[J]. New Phytol, 2009, 183:224-235.
    [14]
    Tamura T, Akutsu T. Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition[J]. BMC Bioinformatics, 2007, 8:466.
    [15]
    Guda C, Guda P, Fahy E, Subramaniam S. MITOPRED:a web server for the prediction of mitochondrial proteins[J]. Nucleic Acids Res, 2004, 32:372-374.
    [16]
    Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction[J]. Bioinformatics, 2001,17:721-728.
    [17]
    Pierleoni A, Martelli PL, Fariselli P, Casadio R. BaCelLo:a balanced subcellular localization predictor[J]. Bioinformatics, 2006, 22:408-416.
    [18]
    Hawkins J, Boden M. Detecting and sorting targeting peptides with neural networks and support vector machines[J]. J Bioinf Comput Biol, 2006, 4:1-18.
    [19]
    Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of N-terminal protein sorting signals[J]. Bioinformatics, 2002, 18:298-305.
    [20]
    Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. PredSL:a tool for the N-terminal sequence-based prediction of protein subcellular localization[J]. Genom Proteom Bioinf, 2006, 4:48-55.
    [21]
    Matsuda S, Ver JP, Saigo H, Ueda N, Toh H, Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines[J]. Protein Sci, 2005, 14:2804-2813.
    [22]
    Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. J Mol Biol, 2000, 300(4):1005-1016.
    [23]
    Small I, Peeters N, Legeai F, Lurin C. Predotar:a tool for rapidly screening proteomes for N-terminal targeting sequences[J]. Proteomics, 2004, 4(6):1581-1590.
    [24]
    Niu B, Jin YH, Feng KY, Lu WC, Cai YD, Li GZ. Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins[J]. Mol Divers, 2008, 12:41-45.
    [25]
    Brady S, Shatkay H. EpiLoc:a (working) text-based system for predicting protein subcellular location[J]. Pac Symp Biocomput, 2008, 13:604-615.
    [26]
    Briesemeister S, Rahnenfuhrer J, Kohlbacher O. YLoc-an interpretable web server for predicting subcellular localization[J]. Nucleic Acids Res, 2010, 38:497-502.
    [27]
    Blum T, Briesemeister S, Kohlbacher O. MultiLoc2:integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction[J]. BMC Bioinformatics, 2009,10:274.
    [28]
    Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. WoLF PSRT:protein localization predictor[J]. Nucleic Acids Res, 2007, 35:585-587.
    [29]
    Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, et al. LocTree3 prediction of localization[J]. Nucleic Acids Res, 2014, 42:W350-W355.
    [30]
    Chou KC, Shen HB. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5:e11335.
    [31]
    Yu CS, Chen YC, Lu CH, Hwang JK:prediction of protein subcellular localization[J]. Proteins, 2006, 64:643-651.
    [32]
    Armenteros JJA, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc:prediction of protein subcellular localization using deep learning[J]. Bioinformatics, 2017, 33(21):3387-3395.
    [33]
    Liu YL, Cao D, Ma LL, Jin XF, Yang PF, et al. TMT-based quantitative proteomics analysis reveals the response of Camellia sinensis to fluoride[J]. J proteomics, 2016, 176:71-81.
    [34]
    San Clemente H, Jamet E. WallProtDB, a database resource for plant cell wall proteomics[J]. Plant Methods, 2015, 11(1):2.
    [35]
    Day A, Fénart S, Neutelings G, Hawkins S, Rolando C, et al. Identification of cell wall proteins in the flax (Linum usitatissimum) stem[J]. Proteomics, 2013, 13(5):812-825.
    [36]
    林珲, 朱海生, 温庆放, 黄丽放. 花椰菜BobACT基因的克隆及其作为内参基因的研究[J]. 植物遗传资源学报, 2019, 20(3):781-789.

    Lin H, Zhu HS, Wen QF, Huang LF. Molecular cloning of actin gene and study on this gene as reference gene in cauliflower (Brassica oleracea L. var. botrytis L.)[J]. Journal of Plant Genetic Resources, 2019, 20(3):781-789.
    [37]
    Sundaravelpandian K, Gang-Ping X, Rae AL, Donna G, Bonnett GD, et al. Overexpression of TaCML20, a calmodulin-like gene, enhances water soluble carbohydrate accumulation and yield in wheat[J]. Physiol Plantarum, 2018, 165(4):790-799.
    [38]
    Ming R, Vanburen R, Liu Y, Yang M, Han Y. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)[J]. Genome Bio, 2013, 14(5):R41.
    [39]
    Nielsen H, Engelbrecht J, von Heijne SBG. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites[J]. Protein Eng, 1997, 10:1-6.
    [40]
    Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R. Plant secretome:unlocking secrets of the secreted proteins[J]. Proteomics, 2010, 10(4):1-29.
    [41]
    Foster LJ, de Hoog C, Zhang YL, Zhang Y, Xie XH, et al. A mammalian organelle map by protein correlation profiling[J]. Cell, 2006, 125(1):187-199.
    [42]
    Liu YL, Li M, Han C, Wu FX, Tu BK, et al. Comparative proteomic analysis of rice shoots exposed to arsenate[J]. J Integr Plant Biol, 2013, 55(9999):1-14.
  • Related Articles

    [1]Zhu Kai, Fan Yingxuan, Zuo Qihui, Tan Siyu, Liu Fenwu, Zhang Jian, Qin Junmei, Gao Lina. Photosynthetic limitation in soybean in response to soil water-nitrogen interactions and its relationship with leaf water use efficiency[J]. Plant Science Journal, 2024, 42(5): 634-643. DOI: 10.11913/PSJ.2095-0837.24036
    [2]Li Su-Hui, Chen Jin-Yi, Wang Jia-Min, Song Hai-Yan, Zhang Jing, Tao Jian-Ping, Liu Jin-Chun. Growth response of two annual herbs to karst soil depth and water supply[J]. Plant Science Journal, 2021, 39(3): 258-267. DOI: 10.11913/PSJ.2095-0837.2021.30258
    [3]Chen Mei-Yan, Zhao Ting-Ting, Peng Jue, Zhang Peng, Han Fei, Liu Xiao-Li, Zhong Cai-Hong. Multivariate analysis of relationship between soil nutrients and fruit quality in ‘Donghong’ kiwifruit (Actinidia chinensis var. chinensis) orchards[J]. Plant Science Journal, 2021, 39(2): 193-200. DOI: 10.11913/PSJ.2095-0837.2021.20193
    [4]Guan Shou-Peng, Chen Fang-Qing, Lü Kun, Zhou Ju-Mei, Xia Ping-Juan. Responses of biomass and components of Myricaria laxiflora seedlings to simulated soil water level changes[J]. Plant Science Journal, 2019, 37(4): 485-494. DOI: 10.11913/PSJ.2095-0837.2019.40485
    [5]DOU Xiao-Lin, LI Ming, WANG Wei-Bo, ZHANG Quan-Fa, CHENG Xiao-Li. Changes in Soil Nutrients in Different Eroded Soils in Pinus massoniana Forest Ecosystems in Fujian Province,China[J]. Plant Science Journal, 2012, (2): 161-168. DOI: 10.3724/SP.J.1142.2012.20161
    [6]LI Qing-Yu, ZHONG Zhang-Cheng, HE Yue-Jun. Effects of Soil Nutrients on Plasticity of Floral Characteristics in Iris japonica Thunb.[J]. Plant Science Journal, 2005, 23(6): 564-567.
    [7]Li Zhi'an, Wang Bosun, Lin Yongbiao, Zeng Youte. A REVIEW OF STUDY ON NUTRIENT RESORPTION OF PLANT[J]. Plant Science Journal, 2000, 18(3): 229-236.
    [8]Hou Songsheng, Li Xinming, Li Honglin, Wu Yulan. STUDIES ON PHYSIOLOGICAL AND BIOCHEMICAL CHARACTER IN SUSPENSION CULTURE OF BERBEBIS JULIANAE SCHNEID CELLS Ⅴ.CELL GROWTH,RESPIRATION,ABSORPTION AND CONSUMPTION OF MAJOR NUTRITIONAL ELEMENTS[J]. Plant Science Journal, 1995, 13(2): 163-166.
    [9]Shen Yinwu, Huang Zebo, Zhu Yunzhi, Wang Qianlin. THE ANALYSIS OF NUTRIENT COMPOSITION OF ANABAENA POWDER[J]. Plant Science Journal, 1994, 12(1): 61-64.
    [10]Ding Zhaohua. NUTRIENT FILM TECHNIQUE[J]. Plant Science Journal, 1986, 4(3): 303-309.
  • Cited by

    Periodical cited type(2)

    1. 张仕兰,王屿岑,刘文亮. 海三棱藨草及其近缘种的DNA条形码研究. 广西植物. 2024(04): 699-709 .
    2. 石佳,李文庭,康帅,张南平,马双成. 果实类药材的性状和显微鉴定研究现状. 药物分析杂志. 2021(08): 1288-1296 .

    Other cited types(4)

Catalog

    Article views (747) PDF downloads (764) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return