Citation: | Chen Yan-Jun, Wang Kun. Advances in studies on small open reading frames in plants[J]. Plant Science Journal, 2020, 38(5): 707-715. DOI: 10.11913/PSJ.2095-0837.2020.50707 |
[1] |
Ji Z, Song R, Regev A, Struhl K. Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins[J]. eLife, 2015, 4:e08890.
|
[2] |
Raney A, Baron AC, Mize GJ, Law GL, Morris DR. In vitro translation of the upstream open reading frame in the mammalian mRNA encoding S-adenosylmethionine decarboxylase[J]. J Biol Chem, 2000, 275(32):24444-24450.
|
[3] |
Couso JP, Patraquim P. Classification and function of small open reading frames[J]. Nat Rev Mol Cell Biol, 2017, 18(9):575-589.
|
[4] |
Hsu PY, Benfey PN. Small but mighty:functional peptides encoded by small ORFs in plants[J]. Proteomics, 2018, 18(10):1700038.
|
[5] |
Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling[J]. Science, 2017, 358(6370):1596-1600.
|
[6] |
Zhong S, Liu M, Wang Z, Huang Q, Hou S, et al. Cys-teine-rich peptides promote interspecific genetic isolation in Arabidopsis[J]. Science, 2019, 364(6443):1-8.
|
[7] |
Lei L, Shi J, Chen J, Zhang M, Sun S, et al. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress[J]. Plant J, 2015, 84(6):1206-1218.
|
[8] |
Xu G, Yuan M, Ai C, Liu L, Zhuang E, et al. uORF-mediated translation allows engineered plant disease resistance without fitness costs[J]. Nature, 2017, 545(7655):491-494.
|
[9] |
Delay C, Imin N, Djordjevic MA. Regulation of Arabidopsis root development by small signaling peptides[J]. Front Plant Sci, 2013, 4(4):352-357.
|
[10] |
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700):235-241.
|
[11] |
Chugunova A, Navalayeu T, Dontsova O, Sergiev P. Mining for Small Translated ORFs[J]. J Proteome Res, 2018, 17(1):1-11.
|
[12] |
Zhang S, Gao J, Liu C. The role of non-coding RNAs in neurodevelopmental disorders[J]. Front Genet, 2019, 10(10):1033-1042.
|
[13] |
Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription[J]. Mol Cell, 2014, 54(1):156-165.
|
[14] |
Wang Y, Luo X, Sun F, Hu J, Zha X, et al. Overexpres-sing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice[J]. Nat Commun, 2018, 9(1):3516-3524.
|
[15] |
Cui J, Luan Y, Jiang N, Bao H, Meng J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin[J]. Plant J, 2017, 89(3):577-589.
|
[16] |
Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding RNAs as a source of new peptides[J]. eLife, 2014, 3:e03523.
|
[17] |
Lin X, Lin W, Ku YS, Wong FL, Li MW, et al. Analysis of soybean long non-coding RNAs reveals a subset of small peptide-coding transcripts[J]. Plant Physiol, 2020, 182(3):1359-1374.
|
[18] |
Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression[J]. Proc Natl Acad Sci, 2006, 103(26):9935-9939.
|
[19] |
Juntawong P, Girke T, Bazin J, Bailey-Serres J. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis[J]. Proc Natl Acad Sci, 2014, 111(1):203-212.
|
[20] |
Fesenko I, Kirov I, Kniazev A, Khazigaleeva R, Lazarev V, et al. Distinct types of short open reading frames are translated in plant cells[J]. Genome Res, 2019, 29(9):1464-1477.
|
[21] |
Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice[J]. Genome Biol, 2014, 15(12):512-528.
|
[22] |
Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Nature Plants, 2017, 3(5):1-5.
|
[23] |
Zhang M, Huang N, Yang X, Luo J, Yan S, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J]. Oncogene, 2018, 37(13):1805-1814.
|
[24] |
Zhang M, Zhao K, Xu X, Yang Y, Yan S, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma[J]. Nat Commun, 2018, 9(1):1-17.
|
[25] |
Lee Y, Kim M, Han J, Yeom KH, Lee S, et al. MicroRNA genes are transcribed by RNA polymeraseⅡ[J]. EMBO J, 2004, 23(20):4051-4060.
|
[26] |
Cui C, Wang JJ, Zhao JH, Fang YY, He XF, et al. A Brassica miRNA regulates plant growth and immunity through distinct modes of action[J]. Mol Plant, 2020, 13(2):231-245.
|
[27] |
Yu Y, Jia T, Chen X. The ‘how’ and ‘where’ of plant microRNAs[J]. New Phytol, 2017, 216(4):1002-1017.
|
[28] |
Tang J, Chu C. MicroRNAs in crop improvement:Fine-tuners for complex traits[J]. Nature Plants, 2017, 3(7):1-11.
|
[29] |
Lauressergues D, Couzigou JM, San Clemente H, Marti-nez Y, Dunand C, et al. Primary transcripts of microRNAs encode regulatory peptides[J]. Nature, 2015, 520(7545):90-93.
|
[30] |
Iacono M, Mignone F, Pesole G. uAUG and uORFs in human and rodent 5'untranslated mRNAs[J]. Gene, 2005, 349(11):97-105.
|
[31] |
Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans[J]. Proc Natl Acad Sci, 2009, 106(18):7507-7512.
|
[32] |
Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation[J]. EMBO J, 2014, 33(9):981-993.
|
[33] |
Weaver J, Mohammad F, Buskirk AR, Storz G. Identifying small proteins by ribosome profiling with stalled initiation complexes[J]. MBio, 2019, 10(2):e02819-18.
|
[34] |
Wu HYL, Song GY, Walley JW, Hsu PYS. The tomato translational landscape revealed by transcriptome assembly and ribosome profiling[J]. Plant Physiol, 2019, 181(1):367-380.
|
[35] |
Hazarika RR, De Coninck B, Yamamoto LR, Martin LR, Cammue BPA, van Noort V. ARA-PEPs:A repository of putative SORF-encoded peptides in Arabidopsis thaliana[J]. BMC Bioinformatics, 2017, 18(1):37.
|
[36] |
Kurihara Y, Makita Y, Kawashima M, Fujita T, Iwasaki S, Matsui M. Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in Arabidopsis[J]. Proc Natl Acad Sci, 2018, 115(30):7831-7836.
|
[37] |
Xu G, Greene GH, Yoo H, Liu L, Marqués J, et al. Global translational reprogramming is a fundamental layer of immune regulation in plants[J]. Nature, 2017, 545(7655):487-490.
|
[38] |
Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH. A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection[J]. Genome Res, 2007, 17(5):632-640.
|
[39] |
Rice P, Longden I, Bleasby A. EMBOSS:the european molecular biology open software suite[J]. Trends Genet, 2000, 16(6):276-277.
|
[40] |
Skarshewski A, Stanton-Cook M, Huber T, Al Mansoori S, Smith R, et al. UPEPperoni:An online tool for upstream open reading frame location and analysis of transcript conservation[J]. BMC Bioinformatics, 2014, 15(1):36-42.
|
[41] |
Wang J, Gribskov M. IRESpy:An XGBoost model for prediction of internal ribosome entry sites[J]. BMC Bioinformatics, 2019, 20(1):409-422.
|
[42] |
Zhao J, Wu J, Xu T, Yang Q, He J, Song X. IRESfinder:identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features[J]. Journal of Genetics and Genomics, 2018, 45(7):403-406.
|
[43] |
Wu TY, Hsieh CC, Hong JJ, Chen CY, Tsai YS. IRSS:A web-based tool for automatic layout and analysis of IRES secondary structure prediction and searching system in silico[J]. BMC Bioinformatics, 2009, 10(1):160-173.
|
[44] |
Hong JJ, Wu TY, Chang TY, Chen CY. Viral IRES prediction system-a web server for prediction of the IRES secondary structure in silico[J]. PLoS One, 2013, 8(11):e79288.
|
[45] |
Kolekar P, Pataskar A, Kulkarni-Kale U, Pal J, Kulkarni A. IRESPred:web server for prediction of cellular and viral internal ribosome entry site (IRES)[J]. Sci Rep, 2016, 6(1):1-7.
|
[46] |
Zhu MM, Gribskov M. MiPepid:MicroPeptide identification tool using machine learning[J]. BMC Bioinformatics, 2019, 20:559.
|
[47] |
Malone B, Atanassov I, Aeschimann F, Li X, Großhans H, Dieterich C. Bayesian prediction of RNA translation from ribosome profiling[J]. Nucleic Acids Res, 2017, 45(6):2960-2972.
|
[48] |
Xiao Z, Huang R, Xing X, Chen Y, Deng H, Yang X. De novo annotation and characterization of the translatome with ribosome profiling data[J]. Nucleic Acids Res, 2018, 46(10):e61.
|
[49] |
Erhard F, Halenius A, Zimmermann C, L'Hernault A, Kowalewski DJ, et al. Improved Ribo-seq enables identification of cryptic translation events[J]. Nat Methods, 2018, 15(5):363-366.
|
[50] |
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification[J]. Nat Biotechnol, 2008, 26(12):1367-1372.
|
[51] |
Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L. SearchGUI:An open-source graphical user interface for simultaneous OMSSA andX!Tandem searches[J]. Proteomics, 2011, 11(5):996-999.
|
[52] |
Spealman P, Naik AW, May GE, Kuersten S, Freeberg L, et al. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data[J]. Genome Res, 2018, 28(2):214-222.
|
[53] |
Jorgensen RA, Dorantes-Acosta AE. Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms[J]. Front Plant Sci, 2012, 3(191):191-202.
|
[54] |
Hsu PY, Calviello L, Wu HYL, Li FW, Rothfels CJ, et al. Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis[J]. Proc Natl Acad Sci, 2016, 113(45):7126-7135.
|
[55] |
Tran MK, Schultz CJ, Baumann U. Conserved upstream open reading frames in higher plants[J]. BMC Genomics, 2008, 9(9):361-378.
|
[56] |
Hao Y, Zhang L, Niu Y, Cai T, Luo J, et al. SmProt:a database of small proteins encoded by annotated coding and non-coding RNA loci[J]. Brief Bioinform, 2018, 19(4):636-643.
|
[57] |
Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of translation with nuc-leotide resolution using ribosome profiling[J]. Science, 2009, 324(5924):218-223.
|
[58] |
Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large non-coding RNAs do not encode proteins[J]. Cell, 2014, 154(1):240-251.
|
[59] |
Zhang B, Wang J, Wang X, Zhu J, Liu Q, et al. Proteo-genomic characterization of human colon and rectal cancer[J]. Nature, 2014, 513(7518):382-387.
|
[60] |
Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, et al. A draft map of the human proteome[J]. Nature, 2014, 509(7502):575-581.
|
[61] |
Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-hoffmann M, et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics[J]. Science, 2008, 320(5878):938-941.
|
[62] |
Budamgunta H, Olexiouk V, Luyten W, Schildermans K, Maes E, et al. Comprehensive peptide analysis of mouse brain striatum identifies novel sORF-encoded polypeptides[J]. Proteomics, 2018, 18(10):1700218-1700234.
|
[63] |
Khitun A, Slavoff SA. Proteomic detection and validation of translated small open reading frames[J]. Curr Protoc Chem Biol, 2019, 11(4):77-104.
|
[64] |
Röhrig H, Schmidt J, Miklashevichs E, Schell J, John M. Soybean ENOD40 encodes two peptides that bind to sucrose synthase[J]. Proc Natl Acad Sci, 2002, 99(4):1915-1920.
|
[65] |
Dong X, Wang D, Liu P, Li C, Zhao Q, et al. Zm908p11, encoded by a short open reading frame (sORF) gene, functions in pollen tube growth as a profilin ligand in maize[J]. J Exp Bot, 2013, 64(8):2359-2372.
|
[66] |
Wang D, Li C, Zhao Q, Zhao L, Wang M, et al. Zm401p10, encoded by an anther-specific gene with short open reading frames, is essential for tapetum degeneration and anther development in maize[J]. Funct Plant Biol, 2009, 36(1):73-85.
|
[67] |
Saul H, Elharrar E, Gaash R, Eliaz D, Valenci M, et al. The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway[J]. Plant J, 2009, 60(6):1031-1042.
|
[68] |
Alatorre-Cobos F, Cruz-Ramírez A, Hayden CA, Pérez-Torres CA, Chauvin AL, et al. Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30[J]. J Exp Bot, 2012, 63(14):5203-5221.
|
[69] |
Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J. Sucrose control of translation mediated by an upstream open reading frame-encoded peptide[J]. Plant Physiol, 2009, 150(3):1356-1367.
|
[70] |
Si X, Zhang H, Wang Y, Chen K, Gao C. Manipulating gene translation in plants by CRISPR-Cas9-mediated genome editing of upstream open reading frames[J]. Nat Protoc, 2020, 15(2):338-363.
|
[71] |
Zhong S, Liu M, Wang Z, Huang Q, Hou S, X et al. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis[J]. Science, 2019, 364(6443):9564-9571.
|