Advance Search
Ouyang Jian, Liu Gui-Hua, Zhou Wen. Community assembly of riparian vegetation in the middle and lower reaches of the Yangtze River[J]. Plant Science Journal, 2020, 38(6): 751-761. DOI: 10.11913/PSJ.2095-0837.2020.60751
Citation: Ouyang Jian, Liu Gui-Hua, Zhou Wen. Community assembly of riparian vegetation in the middle and lower reaches of the Yangtze River[J]. Plant Science Journal, 2020, 38(6): 751-761. DOI: 10.11913/PSJ.2095-0837.2020.60751

Community assembly of riparian vegetation in the middle and lower reaches of the Yangtze River

Funds: 

This work was supported by a grant from the Key Strategic Program, Chinese Academy of Sciences (ZDRW-ZS-2017-3-2).

More Information
  • Received Date: April 13, 2020
  • Revised Date: April 19, 2020
  • Available Online: October 31, 2022
  • Published Date: December 27, 2020
  • In this study, hygrophyte communities at 37 sites in 13 cities along the middle and lower reaches of the Yangtze River (Yichang-Tongling section) were investigated during the wet and dry seasons. Both species composition and phylogenetic structure were examined at each site in the wet and dry seasons. We also revealed the drivers of community assembly combining environmental and spatial factors. Results showed that: (1) α-diversity in the wet season was higher than that in the dry season. There was a positive correlation between hydrological conditions and α-diversity in the wet season, while α-diversity in the dry season was mainly correlated with temperature and soil total nitrogen (TN). (2) The phylogenetic structure in the wet season showed an aggregation, implying that environmental filtering played a dominant role in community assembly; in the dry season, a different pattern was observed between the net relatedness index (NRI) and nearest taxon index (NTI), suggesting the evolution at recent (terminal) phylogenetic nodes. (3) There was a significant relationship between the α-diversity of species and phylogeny, indicating that these two dimensions can represent each other to a certain extent. (4) The composition mechanism of riparian vegetation in the middle and lower reaches of the Yangtze River differed between the wet and dry seasons. Species and phylogenetic structure were both influenced by environmental filtering and dispersal limitation in the wet season, with environmental filtering playing a dominant role in this process. In the dry season, community composition was only somewhat influenced by environmental filtering at the species level. (5) The key drivers of community assembly in our study were temperature at the large scale and aquatic and nutrient conditions of the soil at the small scale. This study should contribute to the management and protection of riparian vegetation in the middle and lower reaches of the Yangtze River.
  • [1]
    牛克昌, 刘怿宁, 沈泽昊, 何方良, 方精云. 群落构建的中性理论和生态位理论[J]. 生物多样性, 2009, 17(6):579-593.

    Niu KC, Liu YN, Shen ZH, He FL, Fang JY. Community assembly:the relative importance of neutral theory and niche theory[J]. Biodiversity Science, 2009, 17(6):579-593.
    [2]
    Prach K, Walker LR. Four opportunities for studies of ecological succession[J]. Trends Ecol Evol, 2011, 26(3):119-123.
    [3]
    Rosindell J, Hubbell SP, Etienne RS. The unified neutral theory of biodiversity and biogeography at age ten[J]. Trends Ecol Evol, 2011, 26(7):340-348.
    [4]
    Clements FE. Plant Succession:an analysis of the deve-lopment of vegetation[M]. Washington:Carnegie Institution of Washington, 1916:20.
    [5]
    Gleason HA. The individualistic concept of the plant association[J]. Bull Torrey Botan Club, 1926, 53(1):7-26.
    [6]
    柴永福, 岳明. 植物群落构建机制研究进展[J]. 生态学报, 2016, 36(15):4557-4572.

    Chai YF, Yue M. Research advances in plant community assembly mechanisms[J]. Acta Ecologica Sinica, 2016, 36(15):4557-4572.
    [7]
    Gravel D, Canham CD, Beaudet M, Messier C. Reconciling niche and neutrality:the continuum hypothesis[J]. Ecol Lett, 2006, 9(4):399-409.
    [8]
    李新辉,刘延虹,刘晔,许玥,杨阳,沈泽昊. 地理距离及环境差异对云南元江干热河谷植物群落beta多样性的影响[J]. 生物多样性, 2016, 24(4):399-406.

    Li XH, Liu YH, Liu Y, Xu Y, Yang Y, Shen ZH. Impacts of geographical distances and environmental differences on the beta diversity of plant communities in the dry-hot valley of the Yuanjiang River[J]. Biodiversity Science, 2016, 24(4):399-406.
    [9]
    赵鸣飞,王国义,邢开雄,王宇航,薛峰,康慕谊,罗开. 秦岭西部森林群落相似性递减格局及其影响因素[J]. 生物多样性, 2017, 25(1):3-10.

    Zhao MF, Wang GY, Xing KX, Wang YH, Xue F, Kang MY, Luo K. Patterns and determinants of species similarity decay of forest communities in the western Qinling Mountains[J]. Biodiversity Science, 2017, 25(1):3-10.
    [10]
    刘灿然, 马克平. 生物群落多样性的测度方法Ⅴ[STXFZ]. 生物群落物种数目的估计方法[J]. 生态学报, 1997, 17(6):601-610.

    Liu CR, Ma KP. Measurement of biotic community diversityⅤ[STXFZ]. Methods for estimating the number of species in a community[J]. Acta Ecologica Sinica, 1997, 17(6):601-610.
    [11]
    Götzenberger L, de Bello F, Bråthen KA, Dacison J, Dubuis A, Guisan A, et al. Ecological assembly rules in plant communities-approaches, patterns and prospects[J]. Biol Rev Camb Philos Soc, 2012, 87(1):111-127.
    [12]
    Petchey OL, Gaston KJ. Functional diversity (FD), species richness and community composition[J]. Ecol Lett, 2002, 5(3):402-411.
    [13]
    李保,张昀哲,唐敏炯. 长江口近十年水质时空演变趋势分析[J]. 人民长江, 2018, 49(18):33-37.

    Li B, Zhang YZ, Tang MJ. Analysis on spatial-temporal evolution trend of water quality of Yangtze River Estuary in recent ten years[J]. Yangtze River, 2018, 49(18):33-37.
    [14]
    生态环境部. 中华人民共和国国家环境保护标准(HJ 962-2018):土壤pH值的测定:电位法[S]. 北京:中国环境出版社, 2018.
    [15]
    鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000.
    [16]
    生态环境部. 中华人民共和国国家环境保护标准(HJ 636-2012):水质总氮的测定:碱性过硫酸钾消解紫外分光光度法[S]. 北京:中国环境出版社, 2012.
    [17]
    国家环境保护局. 中华人民共和国国家标准(GB 11893-89):水质总磷的测定:钼酸铵分光光度法[S/OL]. (1989-12-25). http://39.104.123.17:5533/upload/2009/4/200941575075593.pdf.
    [18]
    赵安玖,胡庭兴,陈小红. 西南山地阔叶混交林群落空间结构的多尺度特征[J]. 生物多样性, 2009, 17(1):43-50.

    Zhao AJ, Hu TX, Chen XH. Multiple-scale spatial analysis of community structure in a mountainous mixed evergreen-deciduous broad-leaved forest, southwest China[J]. Biodiversity Science, 2009, 17(1):43-50.
    [19]
    马克平. 生物群落多样性的测度方法:Ⅰ[STXFZ].α多样性的测度方法(上)[J]. 生物多样性, 1994, 2(3):162-168.
    [20]
    马克平,黄建辉,于顺利,陈灵芝. 北京东灵山地区植物群落多样性的研究:Ⅱ[STXFZ].丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995, 15(3):268-277.

    Ma KP, Huang JH Yu SL, Chen LZ. Plant community diversity in Dongling mountain, Beijing, China:Ⅱ[STXFZ]. species richness, evenness and species diversities[J]. Acta Ecologica Sinica, 1995, 15(3):268-277.
    [21]
    马克平,刘灿然,刘玉明. 生物群落多样性的测度方法:Ⅱ[STXFZ].β多样性的测度方法[J]. 生物多样性, 1995, 3(1):38-43.

    Ma KP, Liu CR, Liu YM. Measurement method of biodiversity:Ⅱ[STXFZ].β diversity measurement method[J]. Biodiversity Science, 1995, 3(1):38-43.
    [22]
    Webb CO, Donoghue MJ. Phylomatic:tree assembly for applied phylogenetics[J]. Mol Ecol Notes, 2005, 5(1):181-183.
    [23]
    Faith DP. Conservation evaluation and phylogenetic diversity[J]. Biol Conserv, 1992, 61(1):1-10.
    [24]
    车盈,金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7):2241-2248.

    Che Y, Jin GZ. Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korean pine forest[J]. Chinese Journal of Applied Ecology, 2019, 30(7):2241-2248.
    [25]
    Kluge J, Kessler M. Phylogenetic diversity, trait diversity and niches:species assembly of ferns along a tropical elevational gradient[J]. J Biogeogr, 2011, 38(2):394-405.
    [26]
    Butterfield BJ, Cavieres LA, Callaway RM, Cook BJ, Kikvidze Z, Lortie CJ, et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments[J]. Ecol Lett, 2013, 16(4):478-486.
    [27]
    冯刚,张金龙,裴男才,饶米德,米湘成,任海保,马克平. 系统发育β多样性指数的比较:以古田山样地为例[J]. 科学通报, 2011, 56(34):2857-2864.

    Feng G, Zhang JL, Pei NC, Rao MD, Mi XC, Ren HB, Ma KP. Comparison of phylobetadiversity indices based on community data from Gutianshan forest plot[J]. Chinese Science Bulletin, 2011, 56(34):2857-2864.
    [28]
    饶米德,冯刚,张金龙,米湘成,陈建华. 生境过滤和扩散限制作用对古田山森林物种和系统发育β多样性的影响[J]. 科学通报, 2013, 58(13):1204-1212.

    Rao MD, Feng G, Zhang JL, Mi XC, Chen JH. Effects of environmental filtering and dispersal limitation on species and phylogenetic beta diversity in Gutianshan National Nature Reserve[J]. Chinese Science Bulletin, 2013, 58(13):1204-1212.
    [29]
    Osawa T, Mitsuhashi H, Ushimaru A. Plant species' coe-xistence relationships may shift according to life history traits and seasons[J]. Plant Ecol, 2014, 215(6):597-612.
    [30]
    Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ. Phylogenies and community ecology[J]. Ann Review Ecol Syst, 2003, 33:475-505.
    [31]
    Hong Q. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in south America[J]. J Plant Ecol, 2018, 11(3):394-400.
    [32]
    Geedicke I, Schultz M, Rudolph B, Oldeland J. Phylogenetic clustering found in lichen but not in plant communities in European heathlands[J]. Community Ecol, 2016, 17(2):216-224.
    [33]
    Cadotte MW, Cardinale BJ, Oakley TH. Evolutionary history and the effect of biodiversity on plant productivity[J]. Proc Nat Acad Sci, 2008, 105(44):17012-17017.
    [34]
    Winter M, Devictor V, Schweiger O. Phylogenetic diversity and nature conservation:where are we?[J]. Trends Ecol Evol, 2013, 28(4):199-204.
    [35]
    Yang H, Mingyu WU, Liu WX, Zhang NL, Wan SQ. Community structure and composition in response to climate change in a temperate steppe[J]. Glob Chang Biol, 2011, 17(1):452-465.
    [36]
    Cleland EE, Collins SL, Dickson TL, Farrer EC, Gross KL, Gherardi LA, et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation[J]. Ecology, 2013, 94(8), 1687-1696.
    [37]
    Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from Inner Mongolia Grasslands[J]. Glob Chang Biol, 2010, 16(1):358-372.
    [38]
    Diamond JM. Assembly of species communities[M]//Cody ML, Diamond JM, eds. Ecology and Evolution of Communities. Cambridge:Press of Harvard University, 1975:342-444.
    [39]
    Hubbell SP. Neutral theory in community ecology and the hypothesis of functional equivalence[J]. Func Ecol, 2005, 19(1):166-172.
    [40]
    Nekola JC, White PS. The distance decay of similarity in biogeography and ecology[J]. J Biogeogr, 1999, 26(4):867-878.
    [41]
    张淼淼,秦浩,王烨,张峰. 汾河中上游湿地植被β多样性[J]. 生态学报, 2016, 36(11):3292-3299.

    Zhang MM, Qing H, Wang Y, Zhang F. Beta diversity of wetland vegetation in the middle and upper reaches of the Fenhe River watershed[J]. Acta Ecologica Sinica, 2016, 36(11):3292-3299.
    [42]
    Tang ZY, Fang JY, Chi XL, Yang YH, Ma WH, Mohhanot A, et al. Geography, environment, and spatial turnover of species in China's grasslands[J]. Ecography, 2012, 35(12):1103-1109.
    [43]
    何池全, 赵魁义, 余国营. 湿地克隆植物的繁殖对策与生态适应性[J]. 生态学杂志, 1999, 18(6):38-46.

    He CQ, Zhao KY, Yu GY. Advance in the ecological adaptability of the clonal plant in wetlands[J]. Chinese Journal of Ecology, 1999, 18(6):38-46.
    [44]
    姚鑫, 杨桂山, 万荣荣, 王晓龙. 水位变化对河流、湖泊湿地植被的影响[J]. 湖泊科学, 2014, 26(6):813-821.

    Yao X, Yang GS, Wan RR, Wang XL. Impact of water level change on wetland vegetation of rivers and lakes[J]. Journal of Lake Sciences, 2014, 26(6):813-821.
    [45]
    韩乃鹏. 水淹胁迫对乐安河河岸带植物群落的分布、生理和生长状况的影响[D]:南昌:江西师范大学, 2017:28-30.
  • Related Articles

    [1]Zhang Dong, Song Shuaishuai, Shi Hongwen, Wei Xinzeng, Jiang Mingxi. Impacts of environmental filtering and dispersal limitation on rare and endangered plant communities of the eastern margin of the Qinghai-Tibet Plateau, China[J]. Plant Science Journal, 2025, 43(2): 201-209. DOI: 10.11913/PSJ.2095-0837.24091
    [2]Wang Meng-Hao, Ran Hang, Liu Yan-Yan, Sun Hua-Yue, Cao Ya-Nan, Wang Hong-Wei, Li Jia-Mei. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal, 2023, 41(2): 149-158. DOI: 10.11913/PSJ.2095-0837.22161
    [3]Cao Guan-Long, Zou Dian-Yang, Zhou Run, Li Lang, Li Jie. A study on the phylogeny and species diversity of the genus Cryptocarya in China[J]. Plant Science Journal, 2021, 39(4): 349-357. DOI: 10.11913/PSJ.2095-0837.2021.40349
    [4]Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
    [5]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [6]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [7]HOU Rong, ZHANG Hua, YI Ling-Jun, LIU Jian-Gang, LÜ Rui, WANG Ying. Study on Epiphytic Bryophytes Species Diversity of Forest Ecosystems in the Ancient Rock Stream Periglacial Landform of the Liaoning Eastern Mountains[J]. Plant Science Journal, 2016, 34(6): 857-872. DOI: 10.11913/PSJ.2095-0837.2016.60857
    [8]ZHAO Zhi-Juan, LIU Guo-Xiang, HU Zheng-Yu. A New Combination Species of Freshwater Cladophorales and Its Phylogenetic Analysis[J]. Plant Science Journal, 2015, 33(3): 281-290. DOI: 10.11913/PSJ.2095-0837.2015.30281
    [9]WANG Chuan-Yi, GUO Bao-Lin. The Characteristics of the Frequently Used Nuclear Robosome Gene Spacers and Their Utilizations in Phylogenetic Study of Plants[J]. Plant Science Journal, 2008, 26(4): 417-423.
    [10]CHEN Shao-Feng, DONG Sui-Sui, WU Wei, SHI Su-Hua, ZHOU Pu-Hua. Phylogenetics of Triarrhena and Related Genera Based on ITS Sequence Data[J]. Plant Science Journal, 2007, 25(3): 239-244.
  • Cited by

    Periodical cited type(6)

    1. 黄河,李雪峰,王学勇,徐振华,李向军,刘春鹏. 张家口坝上地区影响杨树根蘖苗发生和生长的关键因素探讨. 河北林业科技. 2024(02): 16-20 .
    2. 马俊梅,马剑平,满多清,郭春秀,张裕年,赵鹏,王飞,李元星. 河西走廊天然胡杨林的分布和更新特征及其与土壤因子的关系. 干旱区研究. 2023(02): 224-234 .
    3. 张伊莹,邹旭阁,王寅,王健铭,李景文. 额济纳绿洲不同土壤水盐条件多枝柽柳对胡杨种群分布的影响. 北京林业大学学报. 2023(03): 11-20 .
    4. 张妍. 杨树萌蘖发生机理及抑制技术研究现状. 中国林副特产. 2022(04): 79-80+88 .
    5. 王子康,焦阿永,凌红波,单钱娟,张广朋,王文琦. 不同灌溉模式下胡杨断根处理根蘖繁殖特征. 干旱区研究. 2022(04): 1133-1142 .
    6. 白雪,赵成章,康满萍. 疏勒河中游河岸林地下水埋深对胡杨幼苗生物量分配与生长的影响. 生态学杂志. 2020(11): 3605-3612 .

    Other cited types(2)

Catalog

    Article views (676) PDF downloads (612) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return