Citation: | Li Jia, Jiang Bin, Su Ying-Juan, Wang Ting. Structure and phylogenetic analysis of the Pseudotaxus chienii (W. C. Cheng) W. C. Cheng chloroplast genome[J]. Plant Science Journal, 2021, 39(1): 5-13. DOI: 10.11913/PSJ.2095-0837.2021.10005 |
[1] |
傅立国. 中国植物红皮书:稀有濒危植物(第1册)[M]. 北京:科学出版社,1992:138.
|
[2] |
张文秀, 寇一翾, 张丽, 曾卫东, 张志勇.采用生态位模拟预测濒危植物白豆杉5个时期的适宜分布区[J].生态学杂志,2020, 39(2):600-613.
Zhang WX, Kou YX, Zhang L, Zeng WD, Zhang ZY. Suitable distribution of endangered species Pseudotaxus chienii (Cheng) Cheng (Taxaceae) in five periods using niche modeling[J]. Chinese Journal of Ecology, 2020, 39(2):600-613.
|
[3] |
符潮, 刘倩, 孔思佳, 储蓄, 郑飞雄, 等. 白豆杉在江西的地理分布及其群落的特征分析[J]. 赣南师范大学学报, 2017, 38(6):127-130.
Fu C, Liu Q, Kong SJ, Chu X, Zheng FX, et al. The cha-racteristic analysis and geographical distribution of Pseu-dotaxus chienii (Cheng) Cheng in Jiangxi province[J]. Journal of Gannan Normal University, 2017, 38(6):127-130.
|
[4] |
Su YJ, Wang T, Ouyang PY. High genetic differentiation and variation as revealed by ISSR marker in Pseudotaxus chienii (Taxaceae), an old rare conifer endemic to China[J]. Biochem Syst Ecol, 2009, 37(5):579-588.
|
[5] |
Deng Q, Su YJ, Wang T. Microsatellite loci for an old rare species, Pseudotaxus chienii, and transferability in Taxus wallichiana var. mairei (Taxaceae)[J]. Appl Plant Sci, 2013, 1(5):1200456.
|
[6] |
Deng Q, Zhang HR, He YP, Wang T, Su YJ. Chloroplast microsatellite markers for Pseudotaxus chienii developed from the whole chloroplast genome of Taxus chinensis var. mairei (Taxaceae)[J]. Appl Plant Sci, 2017, 5(3):1600153.
|
[7] |
Chaw SM, Wu CS, Sudianto E. Evolution of gymnosperm plastid genome[J]. Adv Bot Res, 2018, 85:195-222.
|
[8] |
Zhu A, Guo W, Gupta S, Fan WS, Jeffrey PM. Evolutio-nary dynamics of the plastid inverted repeat:the effects of expansion, contraction, and loss on substitution rates[J]. New Phytol, 2016, 209(4):1747-1756.
|
[9] |
Yang X, Zhou T, Su X, Wang G, Zhang X, et al. Structu-ral characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms[J]. J For Res, 2020, 31(2):1-14
|
[10] |
Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae:rearrangements, repeats, and codon usage[J]. Mol Biol Evol, 2011, 28(1):583-600.
|
[11] |
Cai Z, Guisinger M, Kim HG, Ruck E, Blazier JC, et al. Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions[J]. J Mol Evol, 2008, 67(6):696-704.
|
[12] |
Guo W, Grewe F, Cobo-Clark A, Fan W, Duan Z, et al. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution[J]. Genome Biol Evol, 2014, 6(3):580-590.
|
[13] |
Wu CS, Chaw SM. Highly rearranged and size-variable chloroplast genomes in conifersⅡ clade (cupressophytes):evolution towards shorter intergenic spacers[J]. Plant Biotechnol J, 2014, 12(3):344-353.
|
[14] |
Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes[J]. PLoS One, 2014, 9:e107679.
|
[15] |
Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S. Hemisphere-scale differences in conifer evolutionary dynamics[J]. Proc Natl Acad Sci USA, 2012, 109(40):16217-16221.
|
[16] |
Cheng Y, Nicolson RG, Tripp K, Chaw SM. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region[J]. Mol Phylogenet Evol, 2000, 14(3):353-365.
|
[17] |
Ran JH, Gao H, Wang XQ. Fast evolution of the retroprocessed mitochondrial rps3 gene in ConiferⅡ and further evidence for the phylogeny of gymnosperms[J]. Mol Phylogenet Evol, 2010, 54(1):136-149.
|
[18] |
Quinn GJ, Price RA, Gader PA. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons[J]. Kew Bull, 2002, 57(3):513-531.
|
[19] |
Ghimire B, Heo K. Cladistic analysis of Taxaceae s.l[J]. Plant Syst Evol, 2013, 300:217-223.
|
[20] |
Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase[J]. Phytotaxa, 2016, 261(3):201-217.
|
[21] |
Li J, Gao L, Tao K, Su YJ, Wang T. The complete chloroplast genome sequence of Amentotaxus argotaenia (Taxaceae)[J]. Mitochondrial DNA, 2015, 27(4):2919-2920.
|
[22] |
Tao K, Gao L, Li J, Chen SS, Su YJ, Wang T. The complete chloroplast genome of Torreya fargesii (Taxaceae)[J]. Mitochondrial DNA, 2016, 27(5):3512-3513.
|
[23] |
Li J, Gao L, Chen SS, Tao K, Su YJ, Wang T. Evolution of short inverted repeat in cupressophytes, transfer of accD to nucleus in Sciadopitys verticillate and phylogenetics position of Sciadopityaceae[J]. Sci Rep, 2016, 6:20934.f
|
[24] |
Wang LL, Shi YL, Wang CX, Li X.The complete chloroplast genome of the white-berry yew Pseudotaxus chienii (Cupressales:Taxaceae), a rare and endangered relict plant endemic to southern China[J].Mitochondrial DNA, 2019, 4(1):760-761.
|
[25] |
Zhang X, Zhang HJ, Landis JB, Deng T, Meng AP, et al.Plastome phylogenomic analysis of Torreya (Taxaceae)[J]. J Syst Evol, 2019, 57(6):607-615.
|
[26] |
Zerbino DR, Birney E. Velvet:algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Res, 2008, 18(5):821-829.
|
[27] |
Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J]. Curr Genet, 2007, 52(5-6):267-274.
|
[28] |
Darling AE, Mau B, Perna NT. ProgressiveMauve:multiple genome alignment with gene gain, loss and rearrangement[J]. PLoS One, 2010, 5(6):e11147.
|
[29] |
Fu CN, Wu CS, Ye LJ, Mo ZQ, Liu J, et al. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide[J]. Sci Rep, 2019, 9(1):2773.
|
[30] |
Yi X, Gao L, Wang B, Su YJ, Wang T. The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae):evolutionary comparison of Cephalotaxus chloroplast DNAs and insights into the loss of inver-ted repeat copies in gymnosperms[J]. Genome Biol Evol, 2013, 5(4):688-698.
|
[31] |
Hsu CY, Wu CS, Chaw SM. Birth of four chimeric plastid gene clusters in Japanese umbrella pine[J]. Genome Biol Evol, 2016, 8(6):1776-1784.
|
[32] |
Li J, Su YJ, Wang T. The repeat sequences and elevated substitution rates of the chloroplast accD gene in Cupres-sophytes[J]. Front Plant Sci, 2018, 9:553.
|
[33] |
Majeed A, Singh A, Choudhary S, Bhardwaj P. RNAseq-based phylogenetic reconstruction of Taxaceae and Cephalotaxaceae[J]. Cladistics, 2018:1-8.
|
[34] |
Tomlinson PB, Zacharias EH. Phyllotaxis, phenology and architecture in Cephalotaxus,Torreya and Amentotaxus (Coniferales)[J]. Bot J Linn Soc, 2001, 135(3):215-228.
|
[35] |
Elpe C, Knopf P, Stützel T, Schulz C. Diversity and evolution of leaf anatomical characters in Taxaceae s.l.-fluorescence microscopy reveals new delimitating characters[J]. J Plant Res, 2018, 131(1):125-141.
|
[36] |
Ghimire B, Jeong MJ, Lee C, Heo K. Inclusion of Cephalotaxus in Taxaceae:evidence from morphology and anatomy[J]. Korean J Pl Taxon, 2018, 48(2):109-114.
|
[37] |
Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW. A new classification and linear sequence of extant gymnosperms[J]. Phytotaxa, 2011, 19:55-70.
|
1. |
吴民富,李莎,谭艺涵,罗林,吴民华,黄琼林. 火龙果叶绿体基因组结构与序列分析. 中国南方果树. 2025(02): 103-107+113 .
![]() | |
2. |
李雪,任玉玲,赵艳,李幸儿,孙胜男,赵成周,李萍. 直穗小檗叶绿体基因组特征及系统发育分析. 福建农林大学学报(自然科学版). 2024(01): 29-38 .
![]() | |
3. |
丁淑金,魏健生,陆莹玲,马福仙,原晓龙,耿云芬,王毅,张汉尧. 油麦吊云杉叶绿体基因组特征及密码子偏性分析. 中南林业科技大学学报. 2023(04): 156-163+190 .
![]() | |
4. |
孙哲,李澳旋,杜晓蓉,宋芸,乔永刚. 房山紫堇叶绿体基因组特征及其系统进化关系. 草地学报. 2022(08): 1982-1989 .
![]() | |
5. |
杨小英,刘畅,曾宪法,刘雄伟,赵杰宏,俸婷婷,周英. 八角枫及其亚种叶绿体基因组序列结构及系统发育分析. 药学学报. 2022(10): 3229-3239 .
![]() | |
6. |
李佳,李清. 美国黄松和蓝粉云杉叶绿体基因组序列测定与分析. 植物科学学报. 2022(06): 791-800 .
![]() |