Advance Search
Wang Shuai-Peng, Yao Cheng-Liang, Zhou Zi-Yu, Chen Yun, Ye Yong-Zhong. Germination characteristics and spatial distribution patterns of woody plants in a deciduous broad-leaved forest in Baiyunshan, Henan Province, China[J]. Plant Science Journal, 2021, 39(1): 32-41. DOI: 10.11913/PSJ.2095-0837.2021.10032
Citation: Wang Shuai-Peng, Yao Cheng-Liang, Zhou Zi-Yu, Chen Yun, Ye Yong-Zhong. Germination characteristics and spatial distribution patterns of woody plants in a deciduous broad-leaved forest in Baiyunshan, Henan Province, China[J]. Plant Science Journal, 2021, 39(1): 32-41. DOI: 10.11913/PSJ.2095-0837.2021.10032

Germination characteristics and spatial distribution patterns of woody plants in a deciduous broad-leaved forest in Baiyunshan, Henan Province, China

Funds: 

This work was supported by a grant from the Henan Youth Talent Support Project (2020HYTP037).

More Information
  • Received Date: July 05, 2020
  • Revised Date: October 18, 2020
  • Available Online: October 31, 2022
  • Published Date: February 27, 2021
  • We studied the woody plant community in a 5 hm2 area of deciduous broad-leaved forest in Baiyunshan Nature Reserve, Henan Province, China, and explored the characteristics and spatial patterns of the sprouting individuals and sprouting species using point distribution. We identified 91 species and 17 369 trees in the study plot, including 62 sprouting species and 2082 sprouting trees. Sprouting species accounted for 68.13% of the total species and sprouting individuals accounted for 11.99% of the total individuals. The diameter at breast height (DBH) distribution of all sprouting woody plants in the plot conformed to an inverted "J" shape, indicating that the sprouting phenomenon mostly occurred in the early stage of woody plant growth and development. The DBH structure of the top 12 sprouting species with importance values showed four types, i.e., inverted "J" type, bimodal type, normal type, and fluctuating type, indicating that different species exhibited different sprouting abilities at different life cycle stages. Point distribution pattern analysis of sprouting individuals in the top 12 sprouting species with importance values showed that the distribution was aggregated at the small scale but was random or uniform at the large scale. Thus, sprouting regeneration appears to be common in temperate deciduous broad-leaved forests and shows different aggregation distribution patterns due to the different adaptation ranges of each species to the environment.
  • [1]
    Bellingham PJ, Sparrow AD. Resprouting as a life history strategy in woody plant communities[J]. Oikos,2000, 89(2):409-416.
    [2]
    闫恩荣, 王希华, 施家月, 王希波, 王良衍. 木本植物萌枝生态学研究进展[J]. 应用生态学报, 2005, 16(12):2459-2464.

    Yan ER, Wang XH, Shi JY, Wang XB, Wang LY. Sprouting ecology of woody plants:a research review[J]. Chinese Journal of Applied Ecology, 2005, 16(12):2459-2464.
    [3]
    朱万泽, 王金锡, 罗成荣, 段学梅. 森林萌生更新研究进展[J]. 林业科学, 2007, 43(9):74-82.

    Zhu WZ, Wang JX, Luo CR, Duan XM. Progresses of studies on forest sprout regeneration[J]. Scientia Silvae Sinicae, 2007, 43(9):74-82.
    [4]
    Tredici PD. Sprouting in temperate trees:a morphological and ecological review[J]. Bot Rev, 2001, 67(2):121-140.
    [5]
    黄甫昭, 丁涛, 李先琨, 郭屹立, 王斌, 等. 弄岗喀斯特季节性雨林不同群丛物种多样性随海拔的变化[J]. 生态学报, 2016, 36(14):4509-4517.

    Huang FZ, Ding T, Li XK, Guo YL, Wang B, et al. Species diversity for various associations along an altitudinal gradient in the karst seasonal rainforest in Nonggang[J]. Acta Ecologica Sinica, 2016, 36(14):4509-4517.
    [6]
    Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, et al. Resprouting as a key functional trait:how buds, protection and resources drive persistence after fire[J]. New Phytol, 2013, 197(1):19-35.
    [7]
    于明坚. 青冈常绿阔叶林群落动态分析[J]. 林业科学, 1999, 35(6):42-51.

    Yu MJ. Dynamics of an evergreen broad-leaved forest dominated by Cyclobalanopsis glauca in southeast China[J]. Scientia Silvae Sinicae, 1999, 35(6):42-51.
    [8]
    Plotkin AB, Foster D, Carlson J, Magill A. Survivors, not invaders, control forest development following simulated hurricane[J]. Ecology, 2013, 94(2):414-423.
    [9]
    Lawes MJ, Clarke PJ. Ecology of plant resprouting:populations to community responses in fire-prone ecosystems[J]. Plant Ecol, 2011, 212(12):1937-1943.
    [10]
    陈云, 郭凌, 姚成亮, 韦博良, 袁志良, 等. 暖温带-北亚热带过渡区落叶阔叶林群落特征[J]. 生态学报, 2017, 37(17):5602-5611.

    Chen Y, Guo L, Yao CL, Wei BL, Yuan ZL, et al. Community characteristics of a deciduous broad-leaved forest in a temperate-subtropical ecological transition zone:analyses of a 5 hm2 forest dynamics plot in Baiyunshan Nature Reserve, Henan Province[J]. Acta Ecologica Sinica, 2017, 37(17):5602-5611.
    [11]
    刘常幸, 金毅, 余建平, 陈声文, 田磊, 等. 古田山茶湾样地甜槠-木荷林根萌特征分析[J]. 浙江大学学报(理学版), 2014, 41(5):573-582.

    Liu CX, Jin Y, Yu JP, Chen SW, Tian L, et al. Characte-ristics of root sprouting trees of Castanopsis eyrei and Schima superba communities in 1 hm2 forest plot at Chawan, Gutianshan National Nature Reserve[J]. Journal of Zhejiang University(Science Edition), 2014, 41(5):573-582.
    [12]
    王中清, 许涵, 林明献, 李意德. 海南尖峰岭60 hm2大样地萌生植物数量特征[J]. 林业科学研究, 2019, 32(2):17-24.

    Wang ZQ, Xu H, Lin MX, Li YD. Numerical characteristics of sprouting plants in the 60 hm2 plot, Jianfengling, Hainan Island[J]. Forest Research, 2019, 32(2):17-24.
    [13]
    叶铎, 钱海源, 王璐瑶, 金芳梅, 倪健, 等. 钱江源国家公园古田山常绿阔叶林木本植物的萌生更新特征[J]. 生态学报, 2018, 38(10):3562-3568.

    Ye D, Qian JY, Wang LY, Jin FM, Ni J, et al. Sprouting characteristics of woody species in a subtropical evergreen broad-leaved forest in Gutianshan of Qianjiangyuan National Park, East China[J]. Acta Ecologica Sinica, 2018, 38(10):3562-3568.
    [14]
    池秀莲, 王庆刚, 郭强, 杨弦, 唐志尧. 古田山常绿阔叶林不同演替群落的萌生特征[J]. 生物多样性, 2019, 27(1):24-32.

    Chi XL, Wang QG, Guo Q, Yang X, Tang ZY. Sprouting characteristics of communities during succession in an evergreen broad-leaved forest on Gutian Mountain, east China[J]. Biodiversity Science, 2019, 27(1):24-32.
    [15]
    苏建荣, 刘万德, 张志钧, 李帅锋. 云南中南部季风常绿阔叶林恢复生态系统萌生特征[J]. 生态学报, 2012, 32(3):805-814.

    Su JR, Liu WD, Zhang ZJ, Li SF. Sprouting characteristic in restoration ecosystems of monsoon evergreen broadleaved forest in south-central of Yunnan Province[J]. Acta Ecologica Sinica, 2012, 32(3):805-814.
    [16]
    陈颖. 林木复壮研究概述[J]. 世界林业研究, 1996, 3:13-17.

    Chen Y. A brief account of the research on forest tree rejuvenation[J]. World Forestry Research, 1996, 3:13-17.
    [17]
    Xue Y, Zhang W, Zhou J, Ma C, Ma L. Effects of stump diameter, stump height, and cutting season on Quercus variabilis stump sprouting[J]. Scand J Forest Res, 2013, 28(3):223-231.
    [18]
    Kammesheidt L. The role of tree sprouts in the restoration of stand structure and species diversity in tropical moist forest after slash-and-burn agriculture in Eastern Paraguay[J]. Plant Ecol, 1998, 139(2):155-165.
    [19]
    李荣, 张文辉, 何景峰, 周建云. 辽东栎伐桩萌苗的发育规律[J]. 林业科学, 2012, 48(3):82-87.

    Li R, Zhang WH, He JF, Zhou JY. Regeneration and development of stump sprouts of Quercus wutaishanica[J]. Scientia Silvae Sinicae, 2012, 48(3):82-87.
    [20]
    王希华, 严晓, 闫恩荣, 金毅. 天童几种常绿阔叶林优势种在砍伐后萌枝更新的初步研究[J]. 武汉植物学研究, 2004, 22(1):52-57.

    Wang XH, Yan X, Yan ER, Jin Y. Primary study on sprout regeneration of several dominant species of evergreen broad-leaved forest after logging in Tiantong[J]. Journal of Wuhan Botanical Research, 2004, 22(1):52-57.
    [21]
    Montserrat V, Terradas J. Neighbour effects on Erica multiflora reproductive performance after clipping[J]. Acta Oecol, 1998, 19(2):132-145.
    [22]
    Xianchong W, Landhusser SM, Lieffers VJ, Zwiazek JJ. Signals controlling root suckering and adventitious shoot formation in aspen[J]. Tree Physiol, 2006, 26(5):681-693.
    [23]
    Grubb JP. The maintanance of species-richness in plant communities:the importance of regeneration niche[J]. Biol Rev, 1977, 52:107-145.
    [24]
    Fladung M, Nowitzki O, Ziegenhagen B, Kumar S. Vegetative and generative dispersal capacity of field released transgenic aspen trees[J]. Trees, 2003, 17(5):412-416.
    [25]
    Guariguata MR. Response of forest tree saplings to experimental mechanical damage in lowland Panama[J]. For Ecol Manage, 1998, 102(2-3):98-111.
    [26]
    Carpenter FL, Recher HF. Pollination, reproduction, and fire[J]. Am Nat, 1979, 113(6):871-879.
    [27]
    Fulton RE, Carpenter FL. Pollination, reproduction, and fire in California Arctostaphylos[J]. Oecologia, 1979, 38(2):147-157.
    [28]
    Klimes L, Klimesova J. Root sprouting in Rumex acetosella under different nutrient levels[J]. Plant Ecol, 1999, 141(1):33-39.
    [29]
    Kabeya D, Sakai A, Matsui K, Sakai S. Resprouting ability of Quercus crispulaseedlings depends on the vegetation cover of their microhabitats[J]. J Plant Res, 2003, 116(3):207-216.
    [30]
    Gracia M, Retana J. Effect of site quality and shading on sprouting patterns of holm oak coppices[J]. For Ecol Manage, 2004, 188(1):39-49.
    [31]
    郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 等. 弄岗北热带喀斯特季节性雨林15 hm2样地木本植物萌生特征[J]. 生态学杂志, 2015, 34(4):955-961.

    Guo QL, Wang B, Xiang WS, Ding T, Lu SH, et al. Sprouting characteristics of tree species in 15 hm2 plot of northern tropical karst seasonal rain forest in Nonggang, Guangxi, southern China[J]. Chinese Journal of Ecology, 2015, 34(4):955-961.
    [32]
    Lai J, Ren H. Species-habitat associations change in a subtropical forest of China[J]. J Veg Sci, 2009, 20(3):415-423.
  • Related Articles

    [1]Wang Yang, Sun Zhenting, Hu Tao, Li Jitao. Identification and expression analysis of VQ family genes in Lolium perenne L.[J]. Plant Science Journal, 2024, 42(1): 48-55. DOI: 10.11913/PSJ.2095-0837.23072
    [2]Liu Xiao-Fei, Gan Jin-Xin, Zhou Tao, Zhang Fu-Zhong, Liu Ning-Fang, Lu Rui, Hu Long-Xing, Xu Qian. Bioinformatics analysis of the MTP gene family in Amaranthus hypochondriacus L. and expression characteristics under cadmium stress[J]. Plant Science Journal, 2023, 41(4): 467-478. DOI: 10.11913/PSJ.2095-0837.22279
    [3]Li Jia-Qi, Luo Shi-Lei, Zhang Shuai-Lei, Zhang Wen-Yuan, Zhang Guo-Bin. Genome-wide identification of pepper OSCA gene family and expression analysis under different stress conditions[J]. Plant Science Journal, 2022, 40(2): 187-196. DOI: 10.11913/PSJ.2095-0837.2022.20187
    [4]Li Fang, Teng Jian-Shai, Chen Xuan-Qin. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Science Journal, 2018, 36(3): 459-469. DOI: 10.11913/PSJ.2095-0837.2018.30459
    [5]Li Hong-You, Chen Qing-Fu. Advances on the role of heterotrimeric G proteins in plant abiotic stress responses[J]. Plant Science Journal, 2018, 36(1): 144-151. DOI: 10.11913/PSJ.2095-0837.2018.10144
    [6]XIAO Zhen, ZHAO Qi, ZHANG Chuan-Fang, WANG Xiao-Li, WANG Quan-Hua, DAI Shao-Jun. Abiotic Stress Response Mechanism of Oilseed Rape (Brassica napus L.) Revealed from Proteomics[J]. Plant Science Journal, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949
    [7]WANG Qiu-Li, YANG Yun-Qiang, YANG Yong-Ping. Molecular Cloning, Sequence Analyses, and Functional Identification the of WRKY53 Gene in Stipa purpurea[J]. Plant Science Journal, 2016, 34(6): 879-887. DOI: 10.11913/PSJ.2095-0837.2016.60879
    [8]ZHANG Zhi-Fei, YANG Zhi-Jian, ZHOU Qian, ZHAO Zhi-Li. Advanced Study on Gene Expression Regulatory Mechanisms of DREB2s Transcription Factor Gene[J]. Plant Science Journal, 2014, 32(3): 297-303. DOI: 10.3724/SP.J.1142.2014.30297
    [9]YANG Rong-Chao, CAI Yu-Jing, DENG Chun-Ting, OUYANG Bo, YE Zhi-Biao. Cloning of Two Salt-responsive Genes and Their Expression Analysis in Tomato[J]. Plant Science Journal, 2011, 29(2): 178-182.
    [10]LI Ming-Hui, SUN Ying, ZHAO Chun-Mei, SUN Ai-Qing, HU Xiao-Ran, LIU Jian. Cloning and Stress Expression Analysis of Calnexin in Tomato[J]. Plant Science Journal, 2006, 24(2): 100-105.

Catalog

    Article views (572) PDF downloads (582) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return