Advance Search
Wang Xiao-Yan, Zhang Cheng, Zhang Min, Ma Can-Can, Yan Ji-Ping, Duan Yi-Fan. Study of anthocyanin composition and fruit color in Osmanthus fragrans 'Zi Yingui'[J]. Plant Science Journal, 2022, 40(5): 677-687. DOI: 10.11913/PSJ.2095-0837.2022.50677
Citation: Wang Xiao-Yan, Zhang Cheng, Zhang Min, Ma Can-Can, Yan Ji-Ping, Duan Yi-Fan. Study of anthocyanin composition and fruit color in Osmanthus fragrans 'Zi Yingui'[J]. Plant Science Journal, 2022, 40(5): 677-687. DOI: 10.11913/PSJ.2095-0837.2022.50677

Study of anthocyanin composition and fruit color in Osmanthus fragrans 'Zi Yingui'

Funds: 

This work was supported by grants from the Jiangsu Natural Science Foundation Youth Fund Project (BK20200786) and China Postdoctoral Science Foundation Project (2019M651839).

More Information
  • Received Date: March 03, 2022
  • Revised Date: April 29, 2022
  • Available Online: December 08, 2022
  • The pericarp of the common seed-bearing Osmanthus fragrans 'Zi Yingui' fruit was used as experimental material, and the chlorophyll, carotenoid, and anthocyanin contents in three different color stages were determined, respectively. The composition and content of anthocyanins were detected by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and the correlation between the temporal differences in the accumulation of anthocyanin components and fruit color was analyzed. Results showed that the pericarp discoloration of 'Zi Yingui' fruit was caused by the degradation of chlorophyll a and accumulation of anthocyanin, which was positively correlated with the accumulation pattern of cyanidin. Pericarp coloration was affected by peo-3-O-rutinoside and pel-3-O-rutinoside. Cya-3-O-arabinoside, cya-3-O-glucoside, cya-3-O-(coumaryl)-glucoside, and cya-3-O-rutinoside were significantly associated with purple-black pigmentation in the pericarp of 'Zi Yingui' fruit.
  • [1]
    Dar JA, Wani AA, Ahmed M, Nazir R, Zargar SM, et al. Peel colour in apple (Malus×domestica Borkh.):an economic quality parameter in fruit market[J]. Sci Hortic-Amsterdam, 2019, 244:50-60.
    [2]
    Chagne D, Carlile CM, Blond C, Volz RK, Whitworth CJ, et al. Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple[J]. BMC Genomics, 2007, 8:212-222.
    [3]
    师守国,户婷婷.枣果实黄烷酮-3-羟化酶基因(F3H)的克隆及生物信息学分析[J].北方园艺, 2016, 14:89-93.

    Shi SG, Hu TT. Cloning and bioinformatics analysis of the jujube fruit flavonoid 3-hydroxylase gene (F3H)[J]. Nor-thern Horticulture, 2016, 14:89-93.
    [4]
    Li X, Li Y, Zhao MH, Hu YB, Meng FJ, et al. Molecular and metabolic insights into anthocyanin biosynthesis for leaf color change in chokecherry (Padus virginiana)[J]. Int J Mol Sci, 2021, 22(19):10697.
    [5]
    Gao J, Ren R, Wei Y, Wei YL, Jin JP, et al. Comparative metabolomic analysis reveals distinct flavonoid biosynthesis regulation for leaf color development of Cymbidium sinense'Red Sun'[J]. Int J Mol Sci, 2020, 21(5):1869.
    [6]
    Duan WK, Sun PL, Li JM. Expression of genes involved in the anthocyanin biosynthesis pathway in white and red fruits of Fragaria pentaphylla and genetic variation in the dihydroflavonol-4-reductase gene[J]. Biochem Syst Ecol, 2017, 72:40-46.
    [7]
    Wang H, Zhang H, Yang Y, Li MF, Zhang YT, et al. The control of red colour by a family of MYB transcription factors in octoploid strawberry (Fragaria×ananassa) fruits[J]. Plant Biotechnol J, 2020, 18:1169-1184.
    [8]
    Yang BH, He S, Liu Y, Liu BC, Ju YH, et al. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries[J]. Food Chem, 2020, 314:126170.
    [9]
    Li H, Yang Z, Zeng QW, Wang SB, Luo YW, et al. Abnormal expression of[STXFX]bHLH3[STXFZ] disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits[J]. Hortic Res, 2020, 7:83.
    [10]
    Li L, Kong ZY, Huan XJ, Liu YJ, Liu YJ, et al. Transcriptomics integrated with widely targeted metabolomics reveals the mechanism underlying grain color formation in wheat at the grain-filling stage[J]. Front Plant Sci, 2021, 12:757750.
    [11]
    Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. J Exp Bot, 2011, 62(8):2465-2483.
    [12]
    刘晓芬,李方,殷学仁,徐昌杰,陈昆松.花青苷生物合成转录调控研究进展[J].园艺学报, 2013, 40(11):2295-2306.

    Liu XF, Li F, Yin XR, Xu CJ, Chen KS. Recent advances in the transcriptional regulation of anthocyanin biosynthesis[J]. Acta Horticulturae Sinica, 2013, 40(11):2295-2306.
    [13]
    刘刚,伍佩珂,蒋小妹,汪淑芳,张晓喻,等.桂花果皮醇提物的抑菌活性和抗氧化活性的研究[J].四川师范大学学报(自然科学版), 2018, 41(5):672-676.

    Liu G, Wu PK, Jiang XM, Wang SF, Zhang XY, et al. Bacteriostasis and antioxidant effects of Osmanthus fragrans fruit peel ethanol extract[J]. Journal of Sichuan Normal University (Natural Science), 2018, 41(5):672-676.
    [14]
    毕淑峰,张铃杰,高慧,程重雁,陈崇美,邵亚南.桂花果实精油化学成分及体外抗氧化活性[J].现代食品科技, 2014, 30(6):238-243.

    Bi SF, Zhang LJ, Gao H, Cheng CM, Chen CM, Shao YN. Chemical constituents and antioxidant activities in vitro of essential oils from Osmanthus fragrans fruits[J]. Modern Food Science and Technology, 2014, 30(6):238-243.
    [15]
    Tang WZ, Cao JQ, Zhang XS, Zhao YQ. Osmanthus fragrans seeds, a source of secoiridoid glucosides and its antioxidizing and novel platelet-aggregation inhibiting function[J]. J Funct Foods, 2015, 14(3):337-344.
    [16]
    Jawaid T, Gupta R, Rahman MA, Kamal M. Antide-pressent activity of alcoholic extract of the fruits of Osmanthus fragrans Lour in mice[J]. J Med Plants Res, 2015, 9(4):187-194.
    [17]
    Pan YM, Zhu ZR, Huang ZL, Wang HS, Liang Y, et al. Characterisation and free radical scavenging activities of novel red pigments from Osmanthus fragrans'seeds[J]. Food Chem, 2009, 112(4):909-913.
    [18]
    王恒山,潘英明,李海云,唐莅东,唐旭杰,黄志清.桂花种子皮黑色素的提取及其抗氧化活性研究[J].云南大学学报(自然科学版), 2004, 26(6A):55-57.

    Wang HS, Pan YM, Li HY, Tang LD, Tang XJ, Huang ZQ. Study on extraction technology of melanin from Osmanthus fragrans'seeds and its antioxidant activity[J], Journal of Yunnan University (Natural Sciences Edition), 2004, 26(6A):55-57.
    [19]
    杨丹,梁正杰,徐广,张万超,黄红燕. Box-Behnken优化微波萃取桂花果皮多酚提取工艺及体外抑制酪氨酸酶活性研究[J].广东化工, 2021, 48(1):16-19.

    Yang D, Liang ZJ, Xu G, Zhang WC, Huang HY. Optimization of microwave extraction technology of polyphenols from the pericarp of Osmanthus fragrans by Box-Behnken and inhibition of tyrosinase activity in vitro[J]. Guangdong Chemical Industry, 2021, 48(1):16-19.
    [20]
    Liu JL, Deng ZW, Sun HW, Song JK, Li D, et al. Diffe-rences in anthocyanin accumulation patterns and related gene expression in two varieties of red pear[J]. Plants-Basel, 2021, 10(4):626.
    [21]
    Zhang Q, Wang LL, Liu ZJ, Zhao ZH, Zhao J, et al. Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration[J]. Food Chem, 2020, 312:125903.
    [22]
    王丹.夏橙果实成熟过程中果皮色泽变化的规律研究[D].武汉:华中农业大学, 2016:13-15.
    [23]
    王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2007:267-270.

    Wang XK. Plant Physiological and Biochemical Experiment Principles and Techniques[M]. Beijing:Higher Education Press, 2007:267-270.
    [24]
    毛建霏,付成平,郭灵安,仲伶俐,雷绍荣.可见分光光度法测定紫甘薯总花青素含量[J].食品与发酵科技, 2010, 46(2):101-104.

    Mao JF, Fu CP, Guo LA, Zhong LL, Lei SR. Determination of total anthocyanidins in purple sweet potato by vis spectrophotometry[J]. Food and Fermentation Sciences&Technology, 2010, 46(2):101-104.
    [25]
    De ferrars RM, Czank C, Saha S, Need PW, Zhang QZ, et al. Methods for isolating, identifying, and quantifying anthocyanin metabolites in clinical samples[J]. Anal Chem, 2014, 86(20):10052-100528.
    [26]
    Liu YH, Lv JH, Liu ZB, Wang J, Yang BZ, et al. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.)[J]. Food Chem, 2020, 306:125629.
    [27]
    Whelan CJ, Wenny DG, Marquis RJ. Ecosystem services provided by birds[J]. Ann Ny Acad Sci, 2008, 1134(1):25-60.
    [28]
    Hart NS. The visual ecology of avian photoreceptors[J]. Prog Retin Eye Res, 2001, 20(5):675-703.
    [29]
    Lancaster JE, Lister CE, Reay PF, Triggs CM. Influence of pigment composition on skin color in a wide range of fruit and vegetables[J]. J Am Soc Hortic Sci, 1997, 122(4):594-598.
    [30]
    Shen JZ, Zou ZW, Zhang XZ, Zhou L, Wang YH, et al. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars[J]. Hortic Res, 2018, 5:7.
    [31]
    Ren J, Liu ZY, Chen WS, Xu HZ, Feng H. Anthocyanin degrading and chlorophyll accumulation lead to the formation of bicolor leaf in ornamental kale[J]. Int J Mol Sci, 2019, 20(3):603.
    [32]
    Wang S, Wang T, Li QQ, Chen X, Tian J, et al. Phosphorylation of MdERF17 by MdMPK4 promotes apple fruit peel degreening during light/dark transitions[J]. Plant Cell, 2022, 34(5):1980-2000.
    [33]
    Chung SW, Yu DJ, Lee HJ. Changes in anthocyanidin and anthocyanin pigments in highbush blueberry (Vacci-nium corymbosum cv. Bluecrop) fruits during ripening[J]. Hortic Environ Biote, 2016, 57(5):424-430.
    [34]
    Dong TT, Han RP, Yu JW, Zhu MG, Zhang Y, et al. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis L.)[J]. Food Chem, 2019, 271:18-28.
    [35]
    Zhang JF, Qiu XJ, Tan QY, Xiao QM, Mei SY. A compa-rative metabolomics study of flavonoids in radish with diffe-rent skin and flesh colors (Raphanus sativus L.)[J]. J Agr Food Chem, 2020, 68(49):14463-14470.
    [36]
    Wang F, Ji GS, Xu ZB, Feng B, Zhou Q, et al. Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (Triticum aestivum L.)[J]. J Agr Food Chem, 2021, 69(38):11171-11184.
    [37]
    Zhong YD, Chen CH, Gong X, Luan XY, Wu ZX, et al. Transcriptome and metabolome analyses reveal a key role of the anthocyanin biosynthetic pathway cascade in the pigmentation of a Cinnamomum camphora red bark mutant ('Gantong 1')[J]. Ind Crop Prod, 2022, 175:114236.
  • Related Articles

    [1]Li Li-Jun, Miao Ling-Feng, Li Da-Dong, Yang Fan. Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings[J]. Plant Science Journal, 2023, 41(3): 358-369. DOI: 10.11913/PSJ.2095-0837.22196
    [2]Guo Lu-Yao, Miao Ling-Feng, Li Da-Dong, Xiang Li-Shan, Yang Fan. Effects of nitrogen addition and warming on growth, development, and physiological characteristics of Dalbergia odorifera T. Chen seedlings[J]. Plant Science Journal, 2022, 40(2): 259-268. DOI: 10.11913/PSJ.2095-0837.2022.20259
    [3]Cai Yuan-Bao, Yang Xiang-Yan. Codon usage bias and its influencing factors in the chloroplast genome of Macadamia integrifolia Maiden & Betche[J]. Plant Science Journal, 2022, 40(2): 229-239. DOI: 10.11913/PSJ.2095-0837.2022.20229
    [4]Wang Yu-Chen, Wang Wen-Juan, Zhong Yue-Ming, Lei Shan-Qing, Li Jing-Wen. Study on the foraging behavior of clonal roots and its influencing factors in Populus euphratica Oliv.[J]. Plant Science Journal, 2020, 38(3): 410-417. DOI: 10.11913/PSJ.2095-0837.2020.30410
    [5]Pu Yu-Jin, Zhang Li-Jia, Miao Ling-Feng, Yang Fan. Effects of different calcium concentrations on the growth and physiological characteristics of Dalbergia odorifera under low temperatures[J]. Plant Science Journal, 2019, 37(2): 251-259. DOI: 10.11913/PSJ.2095-0837.2019.20251
    [6]Wang Yue-Lin, Xu Da-Ping, Yang Zeng-Jiang, Liu Xiao-Jin, Hong Zhou, Zhang Ning-Nan. Effects of transplantation and potassium fertilizer on the photosynthetic characteristics and chlorophyll content of Dalbergia odorifera[J]. Plant Science Journal, 2018, 36(6): 879-887. DOI: 10.11913/PSJ.2095-0837.2018.60879
    [7]ZHU Xia-Xia, ZHANG Hua, ZHU Yan, LIU Jian-Gang, ZHU Ye-Ping, LÜ Rui, WANG Ying, MA Ming-Jun. Forest Community Species Diversity and the Influencing Factors in the Rock Stream Periglacial Landforms of Mt. Laotudingzi[J]. Plant Science Journal, 2016, 34(1): 67-77. DOI: 10.11913/PSJ.2095-0837.2016.10067
    [8]YANG Qi-He, YE Wan-Hui, LIAO Fu-Lin, LIU Zhi-Wei, YIN Xiao-Juan. Experimental Factors Affecting Studying Characteristics of Seed Storage[J]. Plant Science Journal, 2006, 24(5): 469-475.
    [9]HUANG Xuan, XU Zi-Qin, HAO Jian-Guo, LI Jing. Factors Affecting Wheat(Triticum aestivum L.)Transformation Mediated by Biolistic Bombardment[J]. Plant Science Journal, 2004, 22(2): 111-115.
    [10]Zhang Youde, Zhang Junzhi, Mei Fangzhu, Zhou Daming, Hu Delin, Wang Yuanfu. THE TILLERING RULE ON EULALIOPSlS BINATA AND ITS CONTROLLING FACTORS[J]. Plant Science Journal, 1993, 11(2): 185-192.
  • Cited by

    Periodical cited type(6)

    1. Hui Wang,Jiping Zhang,Benyong Wei,Qing Qiao,Wentao Zhang,Yangcui Ning,Chunlan Liu. The effects of climate change on Pinus tabulaeformis radial growth in the Xiaowutai Mountains, northern China. Journal of Forestry Research. 2025(01): 115-125 .
    2. 常素玲. 山西省关帝山林区油松径向生长对气候的响应. 山西林业科技. 2024(01): 24-27 .
    3. 韦晓旭,彭剑峰,彭猛,李轩,崔佳月,李金宽,魏亚飞. 中国南北过渡带油松径向生长对气候因子的响应研究——以鸡公山国家级自然保护区为例. 地理科学. 2024(09): 1643-1652 .
    4. 李镇江,于晨一,刘升云,闫瑞环,黄心邓,刘晓静,陈志成,王婷. 伏牛山南坡3种针叶树径向生长对气候变化的响应. 应用生态学报. 2023(05): 1178-1186 .
    5. 李夏榕,陈怡歆,陈静飞,朱济友,孙广鹏,韦柳端,张新娜,徐程扬. 气候变化对北京近远郊地区油松径向生长影响的比较研究. 北京林业大学学报. 2022(01): 19-28 .
    6. 乔梁,陈雪,高梦竹,王子洋. 气候旅游资源-植被观赏气象指数研究. 黑龙江气象. 2022(03): 18-21 .

    Other cited types(4)

Catalog

    Article views (157) PDF downloads (16) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return