Advance Search
Tang Sha-Sha, Fei Cai-Hong, Yang Cong, Shang Shu-He, Xiong Hao-Lan, Wang Xin-Yi, Wang Xiao-Fan. Interspecific pollen transfer and asymmetry in reproductive interference between Sagittaria trifolia L. and Sagittaria pygmaea L.[J]. Plant Science Journal, 2022, 40(6): 762-770. DOI: 10.11913/PSJ.2095-0837.2022.60762
Citation: Tang Sha-Sha, Fei Cai-Hong, Yang Cong, Shang Shu-He, Xiong Hao-Lan, Wang Xin-Yi, Wang Xiao-Fan. Interspecific pollen transfer and asymmetry in reproductive interference between Sagittaria trifolia L. and Sagittaria pygmaea L.[J]. Plant Science Journal, 2022, 40(6): 762-770. DOI: 10.11913/PSJ.2095-0837.2022.60762

Interspecific pollen transfer and asymmetry in reproductive interference between Sagittaria trifolia L. and Sagittaria pygmaea L.

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31970250).

More Information
  • Received Date: July 15, 2022
  • Revised Date: August 19, 2022
  • Available Online: January 12, 2023
  • Closely-related sympatric species are often at risk of interspecific reproductive interference due to similar reproductive biological characteristics. Fruits can be formed in hand-pollination hybridization experiments of Sagittaria trifolia L. and S.pygmaea L., but the arrival of interspecific pollen tubes to the ovule is delayed due to different growth routes. Here, we investigated sympatrically growingS. trifolia and S. pygmaea populations with overlapping flowering periods and observed the interspecific movement patterns of shared pollinators, using pollen tracers to detect the existence and intensity of interspecific pollen transfer. The existence of reproductive interference and its effect on sexual reproductive fitness were measured using seed set in single-/mixed-plots of the two species. Results showed that: (1) The main shared pollinators visited flowers of both species, but the frequency of interspecific movements was significantly lower than that of intraspecific movements, and pollinators showed a preference for male flowers of S. trifolia. (2) Interspecific pollen transfer by shared pollinators was detected in both species under natural conditions, and the proportion of stigma with alien pollen was only about 1.4%. The pollen ofS. trifolia was carried further and in greater quantity to S. pygmaea flowers, while the pollen of S. pygmaea was mainly transferred in short distances. (3) When the two species coexisted in natural habitats, the proportion of undeveloped S. pygmaea seeds increased significantly, while the proportion of developed S. trifolia seeds remained above 80%, indicating asymmetry in interspecific reproductive interference. In this study, we explored the ecological mechanisms that mitigate reproductive interference, providing a new perspective for understanding the coexistence and reproductive strategies of related plant species in the wild.
  • [1]
    Gröning J, Hochkirch A. Reproductive interference between animal species[J]. Q Rev Biol, 2008, 83(3):257-282.
    [2]
    Katsuhara KR, Ushimaru A. Prior selfing can mitigate the negative effects of mutual reproductive interference between coexisting congeners[J]. Funct Ecol, 2019, 33(8):1504-1513.
    [3]
    Cothran RD. The importance of reproductive interference in ecology and evolution:from organisms to communities[J]. Popul Ecol, 2015, 57(2):339-341.
    [4]
    Whitton J, Sears CJ, Maddison WP. Co-occurrence of related asexual, but not sexual, lineages suggests that reproductive interference limits coexistence[J]. Proc Biol Sci, 2017, 284(1868):20171579.
    [5]
    Burdfield-Steel ER, Shuker DM. Reproductive interference[J]. Curr Biol, 2011, 21(12):R450-R451.
    [6]
    Huang SQ, Shi XQ. Floral isolation in Pedicularis:how do congeners with shared pollinators minimize reproductive interference?[J]. New Phytol, 2013, 199(3):858-865.
    [7]
    Kishi S, Nishida T, Tsubaki Y. Reproductive interference determines persistence and exclusion in species interactions[J]. J Anim Ecol, 2009, 78(5):1043-1049.
    [8]
    Nishida S, Takakura KI, Naiki A, Nishida T. Habitat partitioning in native Geranium species through reproductive interference[J]. Ann Bot, 2020, 125(4):651-661.
    [9]
    Nishida T, Takakura K, Iwao K. Host specialization by reproductive interference between closely related herbivorous insects[J]. Popul Ecol, 2015, 57(2):273-281.
    [10]
    Lopes SA, Bergamo PJ, Queiroz SNP, Ollerton J, Santos T, Rech AR. Heterospecific pollen deposition is positively associated with reproductive success in a diverse hummingbird-pollinated plant community[J]. Oikos, 2022, 2022:e08714.
    [11]
    Campbell DR. Pollen and gene dispersal:the influences of competition for pollination[J]. Evolution, 1985, 39(2):418-431.
    [12]
    Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD. New frontiers in competition for pollination[J]. Ann Bot, 2009, 103(9):1403-1413.
    [13]
    Ye ZM, Dai WK, Jin XF, Gituru R, Wang QF, Yang CF. Competition and facilitation among plants for pollination:can pollinator abundance shift the plant-plant interactions?[J]. Plant Ecol, 2014, 215(1):3-13.
    [14]
    Moreira-Hernandez JI, Muchhala N. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution[J]. Annu Rev Ecol Evol Syst, 2019, 50:191-217.
    [15]
    Kyogoku D. Reproductive interference:ecological and evolutionary consequences of interspecific promiscuity[J]. Popul Ecol, 2015, 57(2):253-260.
    [16]
    Nishida S, Kanaoka MM, Hashimoto K, Takakura KI, Nishida T. Pollen-pistil interactions in reproductive interfe-rence:comparisons of heterospecific pollen tube growth from alien species between two native Taraxacum species[J]. Funct Ecol, 2014, 28(2):450-457.
    [17]
    Takemori A, Naiki A, Takakura KI, Kanaoka MM, Nishida S. Comparison of mechanisms of reproductive interference in Taraxacum[J]. Ann Bot, 2019, 123(6):1017-1027.
    [18]
    Harder LD, Cruzan MB, Thomson JD. Unilateral incompatibility and the effects of interspecific pollination for Erythronium americanum and Erythronium albidum (Li-liaceae)[J]. Can J Bot, 1993, 71(2):353-358.
    [19]
    Runquist RDB. Pollinator-mediated competition between two congeners, Limnanthes douglasii subsp. rosea and L. alba (Limnanthaceae)[J]. Am J Bot, 2012, 99(7):1125-1132.
    [20]
    Arceo-Gómez G, Ashman TL. Heterospecific pollen deposition:does diversity alter the consequences?[J]. New Phytol, 2011, 192(3):738-746.
    [21]
    Briggs HM, Anderson LM, Atalla LM, Delva AM, Dobbs EK, Brosi BJ. Heterospecific pollen deposition in Delphi-nium barbeyi:linking stigmatic pollen loads to reproductive output in the field[J]. Ann Bot, 2016, 117(2):341-347.
    [22]
    Wei N, Kaczorowski RL, Arceo-Gómez G, O'Neill EM, Hayes RA, Ashman TL. Pollinators contribute to the maintenance of flowering plant diversity[J]. Nature, 2021, 597(7878):688-692.
    [23]
    吕娜. 慈姑属植物的种间杂交及同种花粉优势[D]. 武汉:武汉大学, 2015:24-27.
    [24]
    Huang LJ, Wang XW, Wang XF. The structure and deve-lopment of incompletely closed carpels in an apocarpous species, Sagittaria trifolia (Alismataceae)[J]. Am J Bot, 2014, 101(7):1229-1234.
    [25]
    Lyu N, Du W, Wang XF. Unique growth paths of he-terospecific pollen tubes result in late entry into ovules in the gynoecium of Sagittaria (Alismataceae)[J]. Plant Biol, 2017, 19(2):108-114.
    [26]
    Arceo-Gómez G, Raguso RA, Geber MA. Can plants evolve tolerance mechanisms to heterospecific pollen effects? An experimental test of the adaptive potential in Clarkia species[J]. Oikos, 2016, 125(5):718-725.
    [27]
    Fang Q, Huang SQ. A directed network analysis of he-terospecific pollen transfer in a biodiverse community[J]. Ecology, 2013, 94(5):1176-1185.
    [28]
    Johnson AL, Ashman TL. Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem[J]. New Phytol, 2019, 221(1):142-154.
    [29]
    Tur C, Sáez A, Traveset A, Aizen MA. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks:evidence of widespread facilitation in south Andean plant communities[J]. Ecol Lett, 2016, 19(5):576-586.
    [30]
    Ashman TL, Arceo-Gómez G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities[J]. Am J Bot, 2013, 100(6):1061-1070.
    [31]
    Kay KM, Zepeda AM, Raguso RA. Experimental sympatry reveals geographic variation in floral isolation by hawkmoths[J]. Ann Bot, 2019, 123(2):405-413.
    [32]
    Albrecht M, Kleijn D, Williams NM, Tschumi M, Blaauw BR, et al. The effectiveness of flower strips and hedge-rows on pest control, pollination services and crop yield:a quantitative synthesis[J]. Ecol Lett, 2020, 23(10):1488-1498.
    [33]
    王啸闻. 密度和水位变化对小慈姑和野慈姑居群的性别分化及表型可塑性的影响[D]. 武汉:武汉大学, 2015:52-80.
  • Related Articles

    [1]WANG Hai-ling, XIANG Wei, ZHU Shi-dan, ZHAO Hao-yang, DUAN Wei-xing, ZHU Jun-jie. Correlation between leaf structural traits and cold resistance in Saccharum officinarum L.[J]. Plant Science Journal, 2021, 39(6): 672-680. DOI: 10.11913/PSJ.2095-0837.2021.60672
    [2]CHEN Yun, ZHEN Yong, LIU Xia, REN Yu, MA Liu-Feng. Overexpression of the Cotton CBF2 Gene Enhances Salt and Drought Tolerance in Arabidopsis thaliana[J]. Plant Science Journal, 2016, 34(6): 888-900. DOI: 10.11913/PSJ.2095-0837.2016.60888
    [3]YUAN Jin-Feng, NIU Ya-Jie, CHEN Hong-Xian, DONG Qian-Qian, FAN Ya-Li, LIU Zhong-Hua. Comprehensive Evaluation on Cold Resistance of Nine Kinds of Deciduous and Semi-evergreen Dwarf Shrubs from the Freeze to Melt Period in Spring[J]. Plant Science Journal, 2014, 32(6): 630-637. DOI: 10.11913/PSJ.2095-0837.2014.60630
    [4]ZHANG Bi-Yu, LI Ling, ZHENG Si-Chun, FENG Qi-Li. The Cold-resistance and Ultra Structure of Leaf Cells in CfGST Transgenic Arabidopsis thaliana[J]. Plant Science Journal, 2009, 27(3): 246-249.
    [5]HU Ying, WANG Yi-Zhong. Mapping of QTL Controlling Seedling Cold Tolerance Using Recombinant Inbred Lines of Rice (Oryza sativa L.)[J]. Plant Science Journal, 2005, 23(3): 211-215.
    [6]LIN Gang, HE Guang-Yuan. Field Trial and Agronomic Performance of Transgenic Wheat in Hubei[J]. Plant Science Journal, 2004, 22(4): 284-288.
    [7]QU Ting-Ting, CHEN Li-Yan, ZHANG Zhi-Hong, HU Zhong-Li, LI Ping, ZHU Li-Huang, ZHU Ying-Guo. Molecular Mapping of Genes Conferring Cold Tolerance at Seedling Stage Using Doubled Haploid Lines from An indica-japonica Cross in Rice[J]. Plant Science Journal, 2003, 21(5): 385-389.
    [8]Din Xiaoyu, Shi Guoxin, Chen Weipei, Xiu Xiangshen. MORPHOLOGICAL STUDIES ON THE DEVELOPMENT AND COLD RESISTANCE OF THE WINTER BUDS OF ZIZANIA CADUCIFLORA HAND.-MAZZ.[J]. Plant Science Journal, 1993, 11(2): 104-110.
    [9]Sun Zhonghai, Zhang Wencai, Qu Shengxiang, Ma Xiangtao. STUDIES ON THE FATTY ACIDS COMPOSITION OF THE CITRUS CELL MEMBRANE AND ITS RELATIONSHIP WITH THE COLD RESISTANCE[J]. Plant Science Journal, 1990, 8(1): 79-86.
    [10]Xie Tingwei, Ouyang Meishang. ANATOMY OF THE LEAVES AND FREEZING HARDINESS OF THIRTEEN SPECIES OF MAGNOLIACEAE[J]. Plant Science Journal, 1989, 7(3): 234-238.
  • Cited by

    Periodical cited type(4)

    1. 杨正鑫,于潘,王全喜,尤庆敏. 中国硅藻新记录种——帕拉特利氏藻. 西北植物学报. 2024(05): 832-835 .
    2. 刘琪,李佳佳,冯佳,吕俊平,南芳茹,刘旭东,谢树莲. 蟒河国家自然保护区硅藻植物新记录. 山西大学学报(自然科学版). 2021(01): 194-198 .
    3. 刘腾腾,罗粉,王艳璐,王全喜,尤庆敏. 上海淀山湖2种硅藻植物中国新记录. 西北植物学报. 2020(01): 170-173 .
    4. 任军,曾琛,雷洲,郑延丽. 茂兰自然保护区4种纵裂菌科真菌形态学特征及分子系统学研究. 贵州师范学院学报. 2019(06): 26-31 .

    Other cited types(1)

Catalog

    Article views (144) PDF downloads (25) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return