Advance Search
Shao JJ,Liu TL,Zhang WC,Liu X. Exploring the potential adaptability of Isoetes orientalis Liu Hong to the plateau environment based on RNA-seq[J]. Plant Science Journal,2023,41(1):70−78. DOI: 10.11913/PSJ.2095-0837.22061
Citation: Shao JJ,Liu TL,Zhang WC,Liu X. Exploring the potential adaptability of Isoetes orientalis Liu Hong to the plateau environment based on RNA-seq[J]. Plant Science Journal,2023,41(1):70−78. DOI: 10.11913/PSJ.2095-0837.22061

Exploring the potential adaptability of Isoetes orientalis Liu Hong to the plateau environment based on RNA-seq

Funds: This work was supported by a grant from the National Natural Science Foundation of China (31170203)
More Information
  • Received Date: June 14, 2022
  • Revised Date: August 29, 2022
  • Available Online: March 02, 2023
  • In this study, Isoetes orientalis Liu Hong was transplanted at different altitudes, and gene expression analysis was performed based on transcriptome sequencing to explore its adaptation mechanism in aquatic and terrestrial environments at different altitudes. Results showed that, compared with low-altitude transplants, high-altitude transplants exhibited more differentially expressed genes significantly enriched in inositol phosphate metabolism, photosynthesis, antenna protein, flavonoid, and phenylpropanoid biosynthesis pathways. In particular, many specifically expressed genes were identified in plants transplanted to Tibet, most of which were annotated as ribosomal proteins, DNA damage repair enzymes, and enzymes related to unsaturated fatty acid biosynthesis. This gene expression pattern may be related to plant adaptation to high-altitude environments with low oxygen, strong radiation, and marked temperature changes. Results also showed that I. orientalis grown at low altitude long-term could survive in high-altitude environments, and there were certain rules in gene expression patterns. This study provides a reference for exploring the adaptation mechanisms of Isoetes plants to aquatic and terrestrial environments at different altitudes.

  • [1]
    刘星,刘虹,王青锋. 中国水韭属植物的孢子形态特征[J]. 植物分类学报,2008,46(4):479−489. Liu X,Liu H,Wang QF. Spore morphology of Isoёtes (Isoёtaceae) from China[J]. Journal of Systematics and Evolution,2008,46 (4):479−489.

    Liu X, Liu H, Wang QF. Spore morphology of Isoёtes (Isoёtaceae) from China[J]. Journal of Systematics and Evolution, 2008, 46(4): 479-489.
    [2]
    程树颖,刘保东,孙昊,关旸. 两种濒危水韭叶片对化肥胁迫的生理响应[J]. 湿地科学,2015,13(1):111−117. Cheng SY,Liu BD,Sun H,Guan Y. The physiological response of leaves of two kinds of endangered Isoetes under fertilizer stress[J]. Wetland Science,2015,13 (1):111−117.

    Cheng SY, Liu BD, Sun H, Guan Y. The physiological response of leaves of two kinds of endangered isoetes under fertilizer stress[J]. Wetland Science, 2015, 13(1): 111-117.
    [3]
    董元火,王青锋. 中国濒危水生蕨类植物研究进展[J]. 武汉大学学报(理学版),2011,57(4):335−342. Dong YH,Wang QF. Advances in the studies of the endangered aquatic fern in China[J]. Journal of Wuhan University (Natural Science Edition),2011,57 (4):335−342.

    Dong YH, Wang QF. Advances in the studies of the endangered aquatic fern in China[J]. Journal of Wuhan University (Natural Science Edition), 2011, 57(4): 335-342.
    [4]
    Kushalappa AC,Gunnaiah R. Metabolo-proteomics to discover plant biotic stress resistance genes[J]. Trends Plant Sci,2013,18 (9):522−531. doi: 10.1016/j.tplants.2013.05.002
    [5]
    Kudo G,Hirao AS. Geographical distribution,genetic diversity,and reproductive traits of mixed polyploid populations in Parasenecio kamtschaticus (Senecioneae; Asteraceae)[J]. Plant Syst Evol,2020,306 (5):86. doi: 10.1007/s00606-020-01714-3
    [6]
    Dai XK,Yang YJ,Liu X. Transplanting experiment and transcriptome sequencing reveal the potential ecological adaptation to plateau environments in the allopolyploid Isoetes sinensis[J]. Aquat Bot,2021,172:103394. doi: 10.1016/j.aquabot.2021.103394
    [7]
    Zhong ZP,Xin YY,Wang KB,Kuang TY,Shan JX,et al. Studies on photosynthetic characteristics and adaption to environment of some alpine plants in Qinghai-Xizang Plateau[J]. Sci Access,2001,3 (1):1−4.
    [8]
    Tajvar Y,Ghazvini RF,Hamidoghli Y,Sajedi RH. Antioxidant changes of Thomson navel orange (Citrus sinensis) on three rootstocks under low temperature stress[J]. Hortic Environ Biotechnol,2011,52 (6):576−580. doi: 10.1007/s13580-011-0052-5
    [9]
    Schmitz-Eiberger M,Noga G. UV-B-radiation-influence on antioxidative components in Phaseolus vulgaris-leaves[J]. J Appl Bot,2001,75 (5-6):210−215.
    [10]
    Lyons JM, Raison JK, Steponkus PL. The plant membrane in response to low temperature: an overview[M] // Lyons JM, Graham D, Raison JK, eds. Low Temperature Stress in Crop Plants: the Role of the Membrane. New York: Academic Press, 1979: 1−23.
    [11]
    Nielsen KL,Emmersen J,Welinder KG. Digital transcriptomics:a flavour of SAGE[J]. Biochem,2004,26 (4):21−24. doi: 10.1042/BIO02604021
    [12]
    Tian GL,Zhang WD,Dong MH,Yang B,Zhu R,et al. Metabolic pathway analysis based on high-throughput sequencing in a batch biogas production process[J]. Energy,2017,139:571−579. doi: 10.1016/j.energy.2017.08.003
    [13]
    Yang T,Liu X. Comparative transcriptome analysis of Isoetes sinensis under terrestrial and submerged conditions[J]. Plant Mol Biol Rep,2016,34 (1):136−145. doi: 10.1007/s11105-015-0906-6
    [14]
    Grabherr MG,Haas BJ,Yassour M,Levin JZ,Thompson DA,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol,2011,29 (7):644−652. doi: 10.1038/nbt.1883
    [15]
    Smith-Unna R,Boursnell C,Patro R,Hibberd JM,Kelly S. TransRate:reference-free quality assessment of de novo transcriptome assemblies[J]. Genome Res,2016,26 (8):1134−1144. doi: 10.1101/gr.196469.115
    [16]
    Li WZ,Godzik A. Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics,2006,22 (13):1658−1659. doi: 10.1093/bioinformatics/btl158
    [17]
    Li B,Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,2011,12:323. doi: 10.1186/1471-2105-12-323
    [18]
    Maza E. In papyro comparison of TMM (edgeR),RLE (DESeq2),and MRN normalization methods for a simple two-conditions-without-replicates RNA-Seq experimental design[J]. Front Genet,2016,7:164.
    [19]
    曹晔文,肖瑶,许涛,王欣妍,李露,曹炜. 基于网络药理学的"桑枝-桂枝"药对治疗类风湿关节炎的的作用机制研究[J]. 海南医学院学报,2021,27(8):592−602. Cao YW,Xiao Y,Xu T,Wang XY,Li L,Cao W. Study on the mechanism of "mulberry twig-cassia twig" in the treatment of rheumatoid arthritis based on network pharmacology[J]. Journal of Hainan Medical University,2021,27 (8):592−602.

    Cao YW, Xiao Y, Xu T, Wang XY, Li L, Cao W. Study on the mechanism of "mulberry twig-cassia twig" in the treatment of rheumatoid arthritis based on network pharmacology[J]. Journal of Hainan Medical University, 2021, 27(8): 592-602.
    [20]
    Langfelder P,Horvath S. WGCNA:an R package for weighted correlation network analysis[J]. BMC Bioinformatics,2008,9:559. doi: 10.1186/1471-2105-9-559
    [21]
    Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozaki K,Shinozaki K. Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol,1999,17 (3):287−291. doi: 10.1038/7036
    [22]
    Kubo N,Arimura SI. Discovery of the RPL10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms[J]. DNA Res,2010,17 (1):1−9. doi: 10.1093/dnares/dsp024
    [23]
    Rogalski M,Schöttler MA,Thiele W,Schulze WX,Bock R. Rpl33,a nonessential plastid-encoded ribosomal protein in tobacco,is required under cold stress conditions[J]. Plant Cell,2008,20 (8):2221−2237. doi: 10.1105/tpc.108.060392
    [24]
    Ferreyra MLF,Biarc J,Burlingame AL,Casati P. Arabidopsis L10 ribosomal proteins in UV-B responses[J]. Plant Signal Behav,2010,5 (10):1222−1225. doi: 10.4161/psb.5.10.12758
    [25]
    Mukhopadhyay P,Singla-Pareek SL,Reddy MK,Sopory SK. Stress-mediated alterations in chromatin architecture correlate with down-regulation of a gene encoding 60S rpL32 in rice[J]. Plant Cell Physiol,2013,54 (4):528−540. doi: 10.1093/pcp/pct012
    [26]
    Li YP,Shi YT,Li MZ,Fu DY,Wu SF,et al. The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis[J]. Plant Cell,2021,33 (11):3555−3573. doi: 10.1093/plcell/koab215
    [27]
    刘清华,钟章成. 紫外线-B辐射对银杏活性氧代谢及膜系统的影响[J]. 西华师范大学学报(自然科学版),2007,28(2):148−153. Liu QH,Zhong ZC. Effects of ultraviolet-B radiation on active oxygen metabolism and membrane system of Ginkgo biloba[J]. Journal of China West Normal University (Natural Sciences),2007,28 (2):148−153. doi: 10.3969/j.issn.1673-5072.2007.02.009

    Liu QH, Zhong ZC. Effects of ultraviolet-B radiation on active oxygen metabolism and membrane system of Ginkgo biloba[J]. Journal of China West Normal University (Natural Sciences), 2007, 28(2): 148-153. doi: 10.3969/j.issn.1673-5072.2007.02.009
    [28]
    He M,Ding NZ. Plant unsaturated fatty acids:multiple roles in stress response[J]. Front Plant Sci,2020,11:562785. doi: 10.3389/fpls.2020.562785
    [29]
    Einspahr KJ,Thompson GA. Transmembrane signaling via phosphatidylinositol 4,5-bisphosphate hydrolysis in plants[J]. Plant Physiol,1990,93 (2):361−366. doi: 10.1104/pp.93.2.361
    [30]
    Kazan K,Manners JM. The interplay between light and jasmonate signalling during defence and development[J]. J Exp Bot,2011,62 (12):4087−4100. doi: 10.1093/jxb/err142
    [31]
    Khodakovskaya M,Sword C,Wu Q,Perera IY,Boss WF,et al. Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance,carbohydrate metabolism and phosphate-sensitive biomass increases in tomato[J]. Plant Biotechnol J,2010,8 (2):170−183. doi: 10.1111/j.1467-7652.2009.00472.x
    [32]
    Mackerness SAH. Plant responses to ultraviolet-B (UV-B:280-320 nm) stress:what are the key regulators?[J]. Plant Growth Regul,2000,32 (1):27−39. doi: 10.1023/A:1006314001430
    [33]
    Allen DJ,Mckee IF,Farage PK,Baker NR. Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B[J]. Plant Cell Environ,1997,20 (5):633−640. doi: 10.1111/j.1365-3040.1997.00093.x
    [34]
    Isah T. Stress and defense responses in plant secondary metabolites production[J]. Biol Res,2019,52 (1):39. doi: 10.1186/s40659-019-0246-3
    [35]
    Stapleton AE,Walbot V. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage[J]. Plant Physiol,1994,105 (3):881−889. doi: 10.1104/pp.105.3.881
    [36]
    Takshak S,Agrawal SB. Ultraviolet-B radiation:a potent elicitor of phenylpropanoid pathway compounds[J]. J Sci Res,2017,60:79−96.
    [37]
    Kumar K,Rao KP,Biswas DK,Sinha AK. Rice WNK1 is regulated by abiotic stress and involved in internal circadian rhythm[J]. Plant Signal Behav,2011,6 (3):316−320. doi: 10.4161/psb.6.3.13063
    [38]
    Sharma A,Shahzad B,Rehman A,Bhardwaj R,Landi M,Zheng BS. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress[J]. Molecules,2019,24 (13):2452. doi: 10.3390/molecules24132452
    [39]
    董登峰,江立庚,杨杰,陈念平. 大豆磷酸烯醇式丙酮酸磷酸酯酶(PEPP)研究:Ⅰ. 对非生物胁迫的反应[J]. 广西农业生物科学,2005,24(2):113−117. Dong DF,Jiang LG,Yang J,Chen NP. Studies on soybean phosphoenolpyruvate phosphatase (PEPP) :Ⅰ. response to abiotic stresses[J]. Journal of Guangxi Agricultural and Biological Science,2005,24 (2):113−117.

    Dong DF, Jiang LG, Yang J, Chen NP. Studies on soybean phosphoenolpyruvate phosphatase (PEPP): I. response to abiotic stresses[J]. Journal of Guangxi Agricultural and Biological Science, 2005, 24(2): 113-117.
    [40]
    王玲霞. 红树植物秋茄响应盐胁迫的分子生理机制及调控网络研究[D]. 福州: 福建农林大学, 2015: 1-137
    [41]
    康伟伟,张超,易自力,陈智勇,谭炎宁. 水稻磷脂酶PLD家族生物信息学分析[J]. 西南农业学报,2019,32(10):2259−2264. Kang WW,Zhang C,Yi ZL,Chen ZY,Tan YN. Bioinformatics analysis of PLD-family genes in rice[J]. Southwest China Journal of Agricultural Sciences,2019,32 (10):2259−2264.

    Kang WW, Zhang C, Yi ZL, Chen ZY, Tan YN. Bioinformatics analysis of PLD-family genes in rice[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(10): 2259-2264.
  • Related Articles

    [1]Lu Yupeng, Gao Zhu, Zhu Yulin, Mao Jipeng, Yao Dongliang, Wang Xiaoling. Construction and evaluation of Polygonatum cyrtonema Hua intercropping based on the growth and physiological adaptability[J]. Plant Science Journal, 2025, 43(2): 253-264. DOI: 10.11913/PSJ.2095-0837.24100
    [2]LIU Tai-long, JI Ya-li, LIU Yi-xuan, WU Xuan-feng, CHEN Fei-fei, LIU Xing. Study on the adaptive mechanisms of five plants to high-altitude light based on transcriptome sequencing in Maidica wetland of Tibet[J]. Plant Science Journal, 2021, 39(6): 632-642. DOI: 10.11913/PSJ.2095-0837.2021.60632
    [3]Jiang Quan, Qiu Dong-Ping, Wang Zhi, Li Zuo-Zhou, Yao Xiao-Hong. Research progress on local adaptation in plants[J]. Plant Science Journal, 2021, 39(5): 559-570. DOI: 10.11913/PSJ.2095-0837.2021.50559
    [4]Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
    [5]Jin Quan, Li Peng-Peng, Zhang Rui-Hua, Yin Li-Yan. Chlorophyll fluorescence characteristics and HCO3- utilization capability of heteromorphic leaves of Ottelia cordata[J]. Plant Science Journal, 2019, 37(5): 637-643. DOI: 10.11913/PSJ.2095-0837.2019.50637
    [6]Jiang Ya-Ting, Duan Guo-Min, Tian Min, Wang Cai-Xia, Zhang Ying. Anatomical structure of the vegetative organs of Calanthe tsoongiana and their ecological adaptation[J]. Plant Science Journal, 2019, 37(3): 271-279. DOI: 10.11913/PSJ.2095-0837.2019.30271
    [7]Liu Xiong-Sheng, Xiao Yu-Fei, Jiang Yi, Li Juan, Lin Jian-Yong, Liang Rui-Long. Anatomical structures of the vegetative organs of Phoebe bournei (Hemsl.) Yang and ecological adaptability[J]. Plant Science Journal, 2018, 36(2): 153-161. DOI: 10.11913/PSJ.2095-0837.2018.20153
    [8]LI Xiu-Ling, WANG Xiao-Guo, LI Chun-Niu, ZHOU Jin-Ye, DENG Jie-Ling, ZENG Song-Jun, BU Zhao-Yang, LU Jia-Shi. Adaptability Evaluation of Ex Situ Conservation of Thirteen Wild Paphiopedilum Species by Gray-Correlation Analysis[J]. Plant Science Journal, 2015, 33(3): 326-335. DOI: 10.11913/PSJ.2095-0837.2015.30326
    [9]TANG Sai-Chun, WEI Chun-Qiang, , PAN Yu-Mei. Reproductive Adaptability of the Invasive Weed Parthenium hysterophorus L.under Different Nitrogen and Phosphorus Levels[J]. Plant Science Journal, 2010, 28(2): 213-217. DOI: 10.3724/SP.J.1142.2010.20213
    [10]XIAO Yi-An. The Physiological Responses and Adjective Adaptability of Water Stress on Cleome spinosa L. Seedlings[J]. Plant Science Journal, 2001, 19(6): 524-528.

Catalog

    Article views (154) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return