Advance Search
Zhang JY,Zhang ZQ,Zhou W,Sun WG,Li ZM. Karyotype of five Astragalus species from the alpine subnival belt in the Hengduan Mountains[J]. Plant Science Journal,2023,41(1):63−69. DOI: 10.11913/PSJ.2095-0837.22097
Citation: Zhang JY,Zhang ZQ,Zhou W,Sun WG,Li ZM. Karyotype of five Astragalus species from the alpine subnival belt in the Hengduan Mountains[J]. Plant Science Journal,2023,41(1):63−69. DOI: 10.11913/PSJ.2095-0837.22097

Karyotype of five Astragalus species from the alpine subnival belt in the Hengduan Mountains

Funds: This work was supported by grants from the National Natural Science Foundation of China (31960046), Key Projects of the Joint Fund of the National Natural Science Foundation of China (U1802232), Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0502), and Youth Project of Basic Research in Yunnan Province (202201AU070057)
More Information
  • Received Date: July 24, 2022
  • Revised Date: September 11, 2022
  • Available Online: March 02, 2023
  • The chromosome numbers and karyotypes of five species of Astragalus (Fabaceae) collected from the alpine subnival belt in the Hengduan Mountains were determined. All species were analyzed by conventional staining and pressing methods. The karyotype formulae of the five species are reported for the first time. Results showed that: A. craibianus Simps., A. acaulis Baker, A. ernestii Comb., A. tongolensis Ulbr. were diploid, while A. degensis Ulbr. was tetraploid. The chromosome base number for all studied species was x = 8. The karyotype formula of A. craibianus was 2n = 2x = 16 = 6sm + 10m, 2A. The karyotype formula of A. acaulis was 2n = 2x = 16 = 2sm + 14m, 2A. The karyotype formula of A. ernestii was 2n = 2x = 16 = 2sm + 14m, 2A. The karyotype formula of A. degensis was 2n = 4x = 32 = 4sm + 28m, 1A. The karyotype formula of A. tongolensis was 2n = 2x = 16 = 2st + 2sm + 12m, 2A. All species of Astragalus in the Hengduan Mountains were previously reported to be diploid, but this study discovered a tetraploid species for the first time. These results not only expand basic information on the chromosomes of legumes in the alpine subnival belt of the Hengduan Mountains, but also provide a cytological reference for the study of plant phylogeny and evolution of plants within Astragalus in this region.

  • [1]
    Wu ZY, Raven PH, Hong DY. Flora of China [DB/OL]. [2022-03-16]. www. iplant. cn/foc.
    [2]
    黎春花,刘国道. 豆科植物应用价值综述[J]. 热带农业科学,2008,28(4):75−80. Li CH,Liu GD. Multipurpose use of legumes[J]. Chinese Journal of Tropical Agriculture,2008,28 (4):75−80.

    Li CH, Liu GD. Multipurpose use of legumes[J]. Chinese Journal of Tropical Agriculture, 2008, 28(4): 75-80, 92.
    [3]
    中国科学院中国植物志编辑委员会. 中国植物志: 第42卷: 第1分册[M]. 北京: 科学出版社, 1993: 78.
    [4]
    Sanderson MJ,Wojciechowski MF. Diversification rates in atemperate legume clade:are there “so many species” of Astragalus (Fabaceae)[J]. Am J Bot,1996,83 (11):1488−1502. doi: 10.1002/j.1537-2197.1996.tb13942.x
    [5]
    中国科学院青藏高原综合科学考察队. 横断山区维管植物[M]. 北京: 科学出版社, 1993: 942-967.
    [6]
    Chen YS,Deng T,Zhou Z,Sun H. Is the East Asian flora ancient or not?[J]. Natl Sci Rev,2018,5 (6):920−932. doi: 10.1093/nsr/nwx156
    [7]
    Myers N,Mittermeier RA,Mittermeier CG,Da Fonseca GAB,Kent J. Biodiversity hotspots for conservation priorities[J]. Nature,2000,403 (6772):853−858. doi: 10.1038/35002501
    [8]
    李懋学, 张敩方. 植物染色体研究技术[M]. 哈尔滨: 东北林业大学出版社, 1991: 1-20.
    [9]
    王家坚,彭智邦,孙航,聂泽龙,孟盈. 青藏高原与横断山被子植物区系演化的细胞地理学特征[J]. 生物多样性,2017,25(2):218−225. Wang JJ,Peng ZB,Sun H,Nie ZL,Meng Y. Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet plateau and Hengduan mountains[J]. Biodiversity Science,2017,25 (2):218−225.

    Wang JJ, Peng ZB, Sun H, Nie ZL, Meng Y. Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet plateau and Hengduan mountains[J]. Biodiversity Science, 2017, 25(2): 218-225.
    [10]
    黎斌,常朝阳,吴振海,徐朗然. 国产6种黄耆属植物的核型研究[J]. 西北植物学报,2004,24(4):711−715. Li B,Chang ZY,Wu ZH,Xu LR. A karyotype study of six Astragalus species from China[J]. Acta Botanica Boreali-Occidentalia Sinica,2004,24 (4):711−715.

    Li B, Chang ZY, Wu ZH, Xu LR. A karyotype study of six Astragalus species from China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(4): 711-715.
    [11]
    王丽,顾志建,孙航. 青藏高原几种黄芪和棘豆植物核型的初步研究[J]. 云南植物研究,1994,16(1):53−59. Wang L,Gu ZJ,Sun H. Preliminary karyomorphological study on the plants in genera Oxytropis and Astragalus from Qinghai-Xizang Plateau[J]. Acta Botanica Yunnanica,1994,16 (1):53−59.

    Wang L, Gu ZJ, Sun H. Preliminary karyomorphological study on the plants in genera Oxytropis and Astragalus from Qinghai-Xizang Plateau[J]. Acta Botanica Yunnanica, 1994, 16(1): 53-59.
    [12]
    聂泽龙,孙航,顾志建. 横断山区被子植物染色体研究概况[J]. 云南植物研究,2004,26(1):35−57. Nie ZL,Sun H,Gu ZJ. A survey of chromosome numbers from Angiosperms of the Hengduan Mountains,S. W. China[J]. Acta Botanica Yunnanica,2004,26 (1):35−57.

    Nie ZL, Sun H, Gu ZJ. A survey of chromosome numbers from Angiosperms of the Hengduan Mountains, S. W. China[J]. Acta Botanica Yunnanica, 2004, 26(1): 35-57.
    [13]
    Löve Á. Chromosome number reports LXXXIX[J]. Taxon,1985,34 (4):727−730. doi: 10.1002/j.1996-8175.1985.tb04449.x
    [14]
    Ashraf M,Gohil RN. Studies on the cytology of Legumes of Kashmir Himalaya Ⅲ. Interpopulation differences in the karyotypes of 3 species of Astragalus L.[J]. Cytologia,1988,53 (3):543−549. doi: 10.1508/cytologia.53.543
    [15]
    刘玉红,王善敏. 多枝黄芪的核型研究[J]. 草地学报,1994,2(1):56−58. Liu YH,Wang SM. Studies on the karyotype of Astragalus polycladus[J]. Acta Agrestia Sinca,1994,2 (1):56−58.

    Liu YH, Wang SM. Studies on the karyotype of Astragalus polycladus[J]. Acta Agrestia Sinca, 1994, 2(1): 56-58.
    [16]
    黎斌,常朝阳,李思锋,徐朗然,陈彦生,郭晓思. 中国西北地区11种黄耆属植物的细胞学研究[J]. 西北植物学报,2002,22(3):467−475. Li B,Chang ZY,Li SF,Xu LR,Chen YS,Guo XS. Studies on cytology of 11 Astragalus species from Northwestern China[J]. Acta Botanica Boreali-Occidentalia Sinica,2002,22 (3):467−475.

    Li B, Chang ZY, Li SF, Xu LR, Chen YS, Guo XS. Studies on cytology of 11 Astragalus species from Northwestern China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(3): 467-475.
    [17]
    徐波, 李志敏, 孙航. 横断山高山冰缘带种子植物[M]. 北京: 科学出版社, 2014: 153-155.
    [18]
    刘亚辉,孟盈,杨永红,杨永平. 青藏高原六种棘豆属植物的染色体数目及核型报道[J]. 植物分类与资源学报,2011,33(4):423−431. Liu YH,Meng Y,Yang YH,Yang YP. Chromosome numbers and karyotypes of six Oxytropis species (Fabaceae) from the Qinghai-Tibetan Plateau,China[J]. Plant Diversity and Resources,2011,33 (4):423−431.

    Liu YH, Meng Y, Yang YH, Yang YP. Chromosome numbers and karyotypes of six Oxytropis species (Fabaceae) from the Qinghai-Tibetan Plateau, China[J]. Plant Diversity and Resources, 2011, 33(4): 423-431.
    [19]
    黎斌,李思锋,吴振海,常朝阳. 豆科山羊豆族2属5种植物的核型分析[J]. 西北植物学报,2007,27(9):1888−1891. Li B,Li SF,Wu ZH,Chang ZY. Karyotype of 5 leguminosae species in trib. Galegeae from northwest China[J]. Acta Botanica Boreali-Occidentalia Sinica,2007,27 (9):1888−1891.

    Li B, Li SF, Wu ZH, Chang ZY. Karyotype of 5 leguminosae species in trib. Galegeae from northwest China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(9): 1888-1891.
    [20]
    黄荣福,沈颂东,卢学峰. 青藏高原东北部植物染色体数目和多倍性研究[J]. 西北植物学报,1996,16(3):310−318. Huang RF,Shen SD,Lu XF. Studies of the chromosome numbers and polyploidy for some plant in the North-East Qinghai-Xizang Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica,1996,16 (3):310−318.

    Hung RF, Shen SD, Lu XF. Studies of the chromosome numbers and polyploidy for some plant in the North-East Qinghai-Xizang Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 1996, 16(3): 310-318.
    [21]
    丁鸿,邱东萍,陈少雄. 植物染色体标本的制备和染色体核型分析研究进展[J]. 南方农业学报,2012,43(12):1958−1962. Ding H,Qiu DP,Chen SX. Research progress in plant chromosome samples preparation and karyotype analysis[J]. Journal of Southern Agriculture,2012,43 (12):1958−1962.

    Ding H, Qiu DP, Chen SX. Research progress in plant chromosome samples preparation and karyotype analysis[J]. Journal of Southern Agriculture, 2012, 43(12): 1958-1962.
    [22]
    李懋学,陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究,1985,3(4):297−302. Li MX,Chen RY. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research,1985,3 (4):297−302.

    Li MX, Chen RY. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research, 1985, 3(4): 297-302.
    [23]
    Altınordu F,Peruzzi L,Yu Y,He XJ. A tool for the analysis of chromosomes:KaryoType[J]. Taxon,2016,65 (3):586−592. doi: 10.12705/653.9
    [24]
    Levan A,Fredga K,Sandberg AA. Nomenclature for centromeric position on chromosomes[J]. Hereditas,1964,52 (2):201−220.
    [25]
    Stebbins GL. Chromosomal Evolution in Higher Plants[M]. London: Edward Arnold, 1971: 72-123.
    [26]
    Tanaka R. Types of resting nuclei in Orchidaceae[J]. Shokubutsugaku Zasshi,1971,84 (993):118−122. doi: 10.15281/jplantres1887.84.118
    [27]
    Ledingham GF. Chromosome numbers in Astragalus and Oxytropis[J]. Can J Genet Cytol,1960,2 (2):119−128. doi: 10.1139/g60-012
    [28]
    肖勇,杨耀东,夏薇,雷新涛,马子龙. 多倍体在植物进化中的意义[J]. 广东农业科学,2013,40(16):127−130. Xiao Y,Yang YD,Xia W,Lei XT,Ma ZL. Significance of polyploidy evolutionary in flowering plants[J]. Guangdong Agricultural Sciences,2013,40 (16):127−130.

    Xiao Y, Yang YD, Xia W, Lei XT, Ma ZL. Significance of polyploidy evolutionary in flowering plants[J]. Guangdong Agricultural Sciences, 2013, 40(16): 127-130.
    [29]
    De Storme N,Geelen D. The impact of environmental stress on male reproductive development in plants:biological processes and molecular mechanisms[J]. Plant Cell Environ,2014,37:1−18. doi: 10.1111/pce.12142
    [30]
    Van de Peer Y,Ashman TL,Soltis PS,Soltis DE. Polyploidy:an evolutionary and ecological force in stressful times[J]. Plant Cell,2021,33:11−26. doi: 10.1093/plcell/koaa015
    [31]
    刘玉红. 五种黄芪属植物的核型分析[J]. 植物分类学报,1984,22(2):125−127. Liu YH. Karyotype analysis of 5 species of genus Astragalus[J]. Journal of Systematics and Evolution,1984,22 (2):125−127.

    Liu YH. Karyotype analysis of 5 species of genus Astragalus[J]. Journal of Systematics and Evolution, 1984, 22(2): 125-127.
  • Related Articles

    [1]Lu Yupeng, Gao Zhu, Zhu Yulin, Mao Jipeng, Yao Dongliang, Wang Xiaoling. Construction and evaluation of Polygonatum cyrtonema Hua intercropping based on the growth and physiological adaptability[J]. Plant Science Journal, 2025, 43(2): 253-264. DOI: 10.11913/PSJ.2095-0837.24100
    [2]LIU Tai-long, JI Ya-li, LIU Yi-xuan, WU Xuan-feng, CHEN Fei-fei, LIU Xing. Study on the adaptive mechanisms of five plants to high-altitude light based on transcriptome sequencing in Maidica wetland of Tibet[J]. Plant Science Journal, 2021, 39(6): 632-642. DOI: 10.11913/PSJ.2095-0837.2021.60632
    [3]Jiang Quan, Qiu Dong-Ping, Wang Zhi, Li Zuo-Zhou, Yao Xiao-Hong. Research progress on local adaptation in plants[J]. Plant Science Journal, 2021, 39(5): 559-570. DOI: 10.11913/PSJ.2095-0837.2021.50559
    [4]Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
    [5]Jin Quan, Li Peng-Peng, Zhang Rui-Hua, Yin Li-Yan. Chlorophyll fluorescence characteristics and HCO3- utilization capability of heteromorphic leaves of Ottelia cordata[J]. Plant Science Journal, 2019, 37(5): 637-643. DOI: 10.11913/PSJ.2095-0837.2019.50637
    [6]Jiang Ya-Ting, Duan Guo-Min, Tian Min, Wang Cai-Xia, Zhang Ying. Anatomical structure of the vegetative organs of Calanthe tsoongiana and their ecological adaptation[J]. Plant Science Journal, 2019, 37(3): 271-279. DOI: 10.11913/PSJ.2095-0837.2019.30271
    [7]Liu Xiong-Sheng, Xiao Yu-Fei, Jiang Yi, Li Juan, Lin Jian-Yong, Liang Rui-Long. Anatomical structures of the vegetative organs of Phoebe bournei (Hemsl.) Yang and ecological adaptability[J]. Plant Science Journal, 2018, 36(2): 153-161. DOI: 10.11913/PSJ.2095-0837.2018.20153
    [8]LI Xiu-Ling, WANG Xiao-Guo, LI Chun-Niu, ZHOU Jin-Ye, DENG Jie-Ling, ZENG Song-Jun, BU Zhao-Yang, LU Jia-Shi. Adaptability Evaluation of Ex Situ Conservation of Thirteen Wild Paphiopedilum Species by Gray-Correlation Analysis[J]. Plant Science Journal, 2015, 33(3): 326-335. DOI: 10.11913/PSJ.2095-0837.2015.30326
    [9]TANG Sai-Chun, WEI Chun-Qiang, , PAN Yu-Mei. Reproductive Adaptability of the Invasive Weed Parthenium hysterophorus L.under Different Nitrogen and Phosphorus Levels[J]. Plant Science Journal, 2010, 28(2): 213-217. DOI: 10.3724/SP.J.1142.2010.20213
    [10]XIAO Yi-An. The Physiological Responses and Adjective Adaptability of Water Stress on Cleome spinosa L. Seedlings[J]. Plant Science Journal, 2001, 19(6): 524-528.
  • Cited by

    Periodical cited type(1)

    1. 张曼华,谢元贵,田秀,张蓝月,廖小锋,王军才. 土壤微生物对4种森林类型植物多样性形成的影响. 中南林业科技大学学报. 2025(01): 26-38 .

    Other cited types(6)

Catalog

    Article views (141) PDF downloads (30) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return