Citation: | Ou YL,Ba S,Lha D,Liu XY,Liu GH,Liu WZ,Ding BJ. Analysis of plant and soil bacterial diversity and their influencing factors in Tibetan Plateau wetlands[J]. Plant Science Journal,2023,41(1):44−52. DOI: 10.11913/PSJ.2095-0837.22112 |
Plants and microorganisms are the main components of wetland ecosystems and important drivers of energy flow and material cycling. Understanding the diversity of plants and soil microorganisms and their influencing factors is important for maintaining the structure and function of wetland ecosystems. In this study, we conducted a field investigation and laboratory analysis of 26 Tibetan Plateau wetlands to reveal the relationship between wetland plant diversity and soil bacterial diversity, and to identify key factors affecting both. Results showed that plant diversity was significantly related to soil bacterial diversity, but the main factors driving changes in soil bacterial diversity were environmental factors rather than plants. Plant diversity was mainly affected by soil electrical conductivity, while soil bacterial diversity was influenced by altitude, mean annual precipitation, soil pH, and plant functional traits (leaf carbon content and nitrogen content).
[1] |
刘务林, 朱雪林. 中国西藏高原湿地[M]. 北京: 中国林业出版社, 2013: 306−326.
|
[2] |
Wan WJ,Gadd GM,Yang YY,Yuan WK,Gu JD,et al. Environmental adaptation is stronger for abundant rather than rare microorganisms in wetland soils from the Qinghai-Tibet Plateau[J]. Mol Ecol,2021,30 (10):2390−2403. doi: 10.1111/mec.15882
|
[3] |
Maltby E,Acreman MC. Ecosystem services of wetlands:pathfinder for a new paradigm[J]. Hydrol Sci J,2011,56 (8):1341−1359. doi: 10.1080/02626667.2011.631014
|
[4] |
Bledsoe RB,Goodwillie C,Peralta AL. Long-term nutrient enrichment of an oligotroph-dominated wetland increases bacterial diversity in bulk soils and plant rhizospheres[J]. mSphere,2020,5 (3):e00035−20.
|
[5] |
Sim-Sim M,Lopes T,Ruas S,Stech M. Does altitude shape molecular diversity and richness of bryophytes in Madeira’s natural forest? A case study with four bryophyte species at two altitudinal levels[J]. Plant Ecol Evol,2015,148 (2):171−180. doi: 10.5091/plecevo.2015.1041
|
[6] |
Cardelús CL,Colwell RK,Watkins Jr JE. Vascular epiphyte distribution patterns:explaining the mid-elevation richness peak[J]. J Ecol,2006,94 (1):144−156. doi: 10.1111/j.1365-2745.2005.01052.x
|
[7] |
Rosenzweig ML. Species Diversity in Space and Time[M]. Cambridge: Cambridge University Press, 1995: 460.
|
[8] |
唐志尧,方精云. 植物物种多样性的垂直分布格局[J]. 生物多样性,2004,12(1):20−28. Tang ZY,Fang JY. A review on the elevational patterns of plant species diversity[J]. Biodiversity Science,2004,12 (1):20−28. doi: 10.17520/biods.2004004
Tang ZY, Fang JY. A review on the elevational patterns of plant species diversity[J]. Biodiversity Science, 2004, 12(1): 20-28. doi: 10.17520/biods.2004004
|
[9] |
Shang RG,Li SF,Huang XB,Liu WD,Lang XD,Su JR. Effects of soil properties and plant diversity on soil microbial community composition and diversity during secondary succession[J]. Forests,2021,12 (6):805. doi: 10.3390/f12060805
|
[10] |
Ping YM,Pan X,Li W,Wang JZ,Cui LJ. The soil bacterial and fungal diversity were determined by the stoichiometric ratios of litter inputs:evidence from a constructed wetland[J]. Sci Rep,2019,9 (1):13813. doi: 10.1038/s41598-019-50161-9
|
[11] |
周亚东,董洪进,严雪,刘星,王青锋. 西藏地区水生植物多样性及其空间格局初探[J]. 环境生态学,2020,2(11):7−12. Zhou YD,Dong HJ,Yan X,Liu X,Wang QF. Diversity and spatial pattern of aquatic plants in Tibet[J]. Environmental Ecology,2020,2 (11):7−12.
Zhou YD, Dong HJ, Yan X, Liu X, Wang QF. Diversity and spatial pattern of aquatic plants in Tibet[J]. Environmental Ecology, 2020, 2(11): 7-12.
|
[12] |
达文彦,李石胜,古桑群宗,温晓迪,何柄枚,等. 乃朗高寒沼泽湿地植物群落特征与环境因子的关系[J]. 西藏科技,2020(8):9−15.
|
[13] |
潘成梅,刘洋,安瑞志,黄香,巴桑. 西藏麦地卡湿地的浮游植物—1. 优势种的时空生态位[J]. 湖泊科学,2021,33(6):1805−1819. Pan CM,Liu Y,An RZ,Huang X,Ba S. Phytoplankton in the Mitika Wetland,Tibet,China:1. Spatio-temporal niche of dominant species[J]. Journal of Lake Sciences,2021,33 (6):1805−1819. doi: 10.18307/2021.0616
Pan CM, Liu Y, An RZ, Huang X, Ba S. Phytoplankton in the Mitika Wetland, Tibet, China: 1. Spatio-temporal niche of dominant species[J]. Journal of Lake Sciences, 2021, 33(6): 1805-1819. doi: 10.18307/2021.0616
|
[14] |
胡樱,贾慧萍,王志鸽,魏晶晶,王慧春. 青海湿地及其植物资源研究现状[J]. 青海草业,2020,29(1):27−30. HU Y,Jia HP,Wang ZG,Wei JJ,Wang HC. The Qinghai wetland and its research present situation of plant resources[J]. Qinghai Prataculture,2020,29 (1):27−30.
HU Y, Jia HP, Wang ZG, Wei JJ, Wang HC. The Qinghai wetland and its research present situation of plant resources[J]. Qinghai Prataculture, 2020, 29(1): 27-30.
|
[15] |
宋思梦,陈梁婧,张茂娟,王欣然,梁蔡佳,周旭. 甘孜州湿地自然保护区生态环境现状及保护措施探讨[J]. 现代园艺,2021,44(17):79−82.
|
[16] |
褚青帅,刘贵华,邢伟. 青藏高原湿地植物轻金属元素含量特征及其与环境因素的关系研究[J]. 植物科学学报,2021,39(2):121−131. Chu QS,Liu GH,Xing W. Concentrations of light metal elements in wetland plants and relationships with environmental factors in Qinghai-Tibet Plateau[J]. Plant Science Journal,2021,39 (2):121−131.
Chu QS, Liu GH, Xing W. Concentrations of light metal elements in wetland plants and relationships with environmental factors in Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(2): 121-131.
|
[17] |
刘泰龙,姬亚丽,刘怡萱,吴玄峰,陈飞飞,刘星. 基于转录组测序探讨西藏麦地卡湿地5种植物对高海拔光照的适应机制[J]. 植物科学学报,2021,39(6):632−642. Liu TL,Ji YL,Liu YX,Wu XF,Chen FF,Liu X. Study on the adaptive mechanisms of five plants to high-altitude light based on transcriptome sequencing in Maidica wetland of Tibet[J]. Plant Science Journal,2021,39 (6):632−642.
Liu TL, Ji YL, Liu YX, Wu XF, Chen FF, Liu X. Study on the adaptive mechanisms of five plants to high-altitude light based on transcriptome sequencing in Maidica wetland of Tibet[J]. Plant Science Journal, 2021, 39(6): 632-642.
|
[18] |
Jiang XL,Yao L,Guo LD,Liu GH,Liu WZ. Multi-scale factors affecting composition,diversity,and abundance of sediment denitrifying microorganisms in Yangtze lakes[J]. Appl Microbiol Biotechnol,2017,101 (21):8015−8027. doi: 10.1007/s00253-017-8537-5
|
[19] |
Sui X,Zhang RT,Frey B,Yang LB,Liu YN,et al. Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China[J]. Ecol Evol,2021,11 (5):2194−2208. doi: 10.1002/ece3.7184
|
[20] |
Delgado-Baquerizo M,Reich PB,Khachane AN,Campbell CD,Thomas N,et al. It is elemental:soil nutrient stoichiometry drives bacterial diversity[J]. Environ Microbiol,2017,19 (3):1176−1188. doi: 10.1111/1462-2920.13642
|
[21] |
Zhou W,Jiang XL,Ouyang J,Lu B,Liu WZ,Liu GH. Environmental factors,more than spatial distance,explain community structure of soil ammonia-oxidizers in wetlands on the Qinghai-Tibetan Plateau[J]. Microorganisms,2020,8 (6):933. doi: 10.3390/microorganisms8060933
|
[22] |
Jiang XL,Liu WZ,Yao LG,Liu GH,Yang YY. The roles of environmental variation and spatial distance in explaining diversity and biogeography of soil denitrifying communities in remote Tibetan wetlands[J]. FEMS Microbiol Ecol,2020,96 (5):fiaa063. doi: 10.1093/femsec/fiaa063
|
[23] |
Wardle DA,Bardgett RD,Klironomos JN,Setälä H,van der Putten WH,Wall DH. Ecological linkages between aboveground and belowground biota[J]. Science,2004,304 (5677):1629−1633. doi: 10.1126/science.1094875
|
[24] |
Yashiro E,Pinto-Figueroa E,Buri A,Spangenberg JE,Adatte T,et al. Local environmental factors drive divergent grassland soil bacterial communities in the western Swiss Alps[J]. Appl Environ Microbiol,2016,82 (21):6303−6316. doi: 10.1128/AEM.01170-16
|
[25] |
Ni YY,Yang T,Ma YY,Zhang KP,Soltis PS,et al. Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China[J]. Glob Ecol Biogeogr,2021,30 (11):2164−2177. doi: 10.1111/geb.13373
|
[26] |
Guo JX,Zhou YX,Guo HJ,Min W. Saline and alkaline stresses alter soil properties and composition and structure of gene-based nitrifier and denitrifier communities in a calcareous desert soil[J]. BMC Microbiol,2021,21 (1):246. doi: 10.1186/s12866-021-02313-z
|
[27] |
李明家,吴凯媛,孟凡凡,沈吉,刘勇勤,等. 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应[J]. 生物多样性,2020,28(12):1570−1580. Li MJ,Wu KY,Meng FF,Shen J,Liu YQ,et al. Beta diversity of stream bacteria in Hengduan Mountains:the effects of climatic and environmental variables[J]. Biodiversity Science,2020,28 (12):1570−1580. doi: 10.17520/biods.2019390
Li MJ, Wu KY, Meng FF, Shen J, Liu YQ, et al. Beta diversity of stream bacteria in Hengduan Mountains: The effects of climatic and environmental variables[J]. Biodiversity Science, 2020, 28(12): 1570-1580. doi: 10.17520/biods.2019390
|
[28] |
甄莉,吴耿,杨渐,蒋宏忱. 西藏热泉沉积物的硫氧化细菌多样性及其影响因素[J]. 微生物学报,2019,59(6):1089−1104. Zhen L,Wu G,Yang J,Jiang HC. Distribution and diversity of sulfur-oxidizing bacteria in the surface sediments of Tibetan hot springs[J]. Acta Microbiologica Sinica,2019,59 (6):1089−1104.
Zhen L, Wu G, Yang J, Jiang HC. Distribution and diversity of sulfur-oxidizing bacteria in the surface sediments of Tibetan hot springs[J]. Acta Microbiologica Sinica, 2019, 59(6): 1089-1104.
|
[29] |
Delgado-Baquerizo M,Fry EL,Eldridge DJ,de Vries FT,Manning P,et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe[J]. New Phytol,2018,219 (2):574−587. doi: 10.1111/nph.15161
|
[30] |
Callahan BJ,McMurdie PJ,Rosen MJ,Han AW,Johnson AJA,Holmes SP. DADA2:High-resolution sample inference from Illumina amplicon data[J]. Nat Methods,2016,13 (7):581−583. doi: 10.1038/nmeth.3869
|
[31] |
Chao A. Nonparametric estimation of the number of classes in a population[J]. Scand J Statist,1984,11 (4):265−270.
|
[32] |
Shannon CE. A mathematical theory of communication[J]. Bell Syst Tech J,1948,27 (3):379−423.
|
[33] |
Rahman MM,Mostofa MG,Keya SS,Siddiqui MN,Ansary MMU,et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants[J]. Int J Mol Sci,2021,22 (19):10733. doi: 10.3390/ijms221910733
|
[34] |
崔乔,何彤慧,全晓塞,陈向全,何玉实. 鄂尔多斯盐沼湿地土壤盐分特征对植物群落的影响[J]. 盐湖研究,2022,30(1):25−32. Cui Q,He TH,Quan XS,Chen XQ,He YS. Effects of soil salinity characteristics on plant community in ordos salt marsh wetland[J]. Journal of Salt Lake Research,2022,30 (1):25−32.
Cui Q, He TH, Quan XS, Chen XQ, He YS. Effects of soil salinity characteristics on plant community in ordos salt marsh wetland[J]. Journal of Salt Lake Research, 2022, 30(1): 25-32.
|
[35] |
Harrison S,Spasojevic MJ,Li DJ. Climate and plant community diversity in space and time[J]. Proc Natl Acad Sci USA,2020,117 (9):4464−4470. doi: 10.1073/pnas.1921724117
|
[36] |
何远政,黄文达,赵昕,吕朋,王怀海. 气候变化对植物多样性的影响研究综述[J]. 中国沙漠,2021,41(1):59−66. He YZ,Huang WD,Zhao X,Lü P,Wang HH. Review on the impact of climate change on plant diversity[J]. Journal of Desert Research,2021,41 (1):59−66.
He YZ, Huang WD, Zhao X, Lv P, Wang HH. Review on the impact of climate change on plant diversity[J]. Journal of Desert Research, 2021, 41(1): 59-66.
|
[37] |
Nottingham AT,Fierer N,Turner BL,Whitaker J,Ostle NJ,et al. Microbes follow Humboldt:temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes[J]. Ecology,2018,99 (11):2455−2466. doi: 10.1002/ecy.2482
|
[38] |
Hong ZD,Ding SY,Zhao QH,Qiu PW,Chang JL,et al. Plant trait-environment trends and their conservation implications for riparian wetlands in the Yellow River[J]. Sci Total Environ,2021,767:144867. doi: 10.1016/j.scitotenv.2020.144867
|
[39] |
Kang EZ,Li Y,Zhang XD,Yan ZQ,Wu HD,et al. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland[J]. Sci Total Environ,2021,774:145780. doi: 10.1016/j.scitotenv.2021.145780
|
[40] |
Neina D. The role of soil pH in plant nutrition and soil remediation[J]. Appl Environ Soil Sci,2019,2019:5794869.
|
[41] |
Wang JJ,Soininen J,He JZ,Shen J. Phylogenetic clustering increases with elevation for microbes[J]. Environ Microbiol Rep,2012,4 (2):217−226. doi: 10.1111/j.1758-2229.2011.00324.x
|
[42] |
杨阳,章妮,蒋莉莉,陈克龙. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报,2021,29(5):1043−1052. Yang Y,Zhang N,Jiang LL,Chen KL. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in bird island of Qinghai Lake on the Tibetan Plateau[J]. Acta Agrestia Sinica,2021,29 (5):1043−1052.
Yang Y, Zhang N, Jiang LL, Chen KL. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in bird island of Qinghai Lake on the Tibetan Plateau[J]. Acta Agrestia Sinica, 2021, 29(5): 1043-1052.
|
[43] |
Fu WG,Wang YX,Wei W,Li PP. Species diversity and functional prediction of soil bacterial communities in constructed wetlands with different plant conditions[J]. Curr Microbiol,2019,76 (3):338−345. doi: 10.1007/s00284-019-01634-7
|
[44] |
Bahram M,Netherway T,Hildebrand F,Pritsch K,Drenkhan R,et al. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function[J]. New Phytol,2020,227 (4):1189−1199. doi: 10.1111/nph.16598
|
[45] |
Delgado-Baquerizo M,Bardgett RD,Vitousek PM,Maestre FT,Williams MA,et al. Changes in belowground biodiversity during ecosystem development[J]. Proc Natl Acad Sci USA,2019,116 (14):6891−6896. doi: 10.1073/pnas.1818400116
|
[46] |
Lange M,Eisenhauer N,Sierra CA,Bessler H,Engels C,et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nat Commun,2015,6:6707. doi: 10.1038/ncomms7707
|
[47] |
Yuan X,Knelman JE,Gasarch E,Wang DL,Nemergut DR,Seastedt TR. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities[J]. Ecology,2016,97 (6):1543−1554. doi: 10.1890/15-1160.1
|
[48] |
Chen SP,Wang WT,Xu WT,Wang Y,Wan HW,et al. Plant diversity enhances productivity and soil carbon storage[J]. Proc Natl Acad Sci USA,2018,115 (16):4027−4032. doi: 10.1073/pnas.1700298114
|
[49] |
Cao QQ,Zhang HJ,Ma W,Wang RQ,Liu J. Composition characteristics of organic Matter and bacterial communities under the Alternanthera philoxeroide invasion in wetlands[J]. Appl Sci,2020,10 (16):5571. doi: 10.3390/app10165571
|
1. |
张曼华,谢元贵,田秀,张蓝月,廖小锋,王军才. 土壤微生物对4种森林类型植物多样性形成的影响. 中南林业科技大学学报. 2025(01): 26-38 .
![]() |