Citation: | Sun PF,Shen YF,Wang LJ,Chen T,Zhang M,Xiao WF,Cheng RM. Effects of nitrogen addition and ectomycorrhizal fungi on growth and photosynthetic characteristics of Pinus massoniana Lamb. seedlings[J]. Plant Science Journal,2023,41(1):112−120. DOI: 10.11913/PSJ.2095-0837.22113 |
To explore the physiological responses and adaptation mechanisms of P. massoniana Lamb. inoculated with ectomycorrhizal fungi (EMF) under increasing nitrogen deposition, one-year-old P. massoniana seedlings were inoculated with EMF and stimulated by nitrogen deposition (0, 30, 60, 90 kg N·hm−2·a−1, respectively). The effects of nitrogen application and inoculation on the growth and photosynthetic characteristics of P. massoniana seedlings were then studied. Results showed that: (1) Under the same nitrogen concentration, both kinds of EMF promoted the growth and photosynthesis of P. massoniana seedlings, and inoculation had significant effects on plant height, growth, chlorophyll b, Pn, Gs, Ci, and Tr. The growth promoting effects of both EMF differed under different nitrogen concentrations. (2) Within a certain range of nitrogen deposition, increasing nitrogen promoted P. massoniana seedling growth. Diameter, aboveground dry weight, and underground dry weight increased with the increase in nitrogen concentration. (3) Under interactive treatment, the growth and photosynthetic indices of P. massoniana seedlings increased, among which plant height, growth, and chlorophyll b increased significantly, indicating that nitrogen application and EMF inoculation promoted P. massoniana growth. In general, EMF inoculation promoted the growth, photosynthesis, and productivity of P. massoniana under a certain range of nitrogen deposition. Under a background of increasing nitrogen deposition in the future, nitrogen application can promote the growth of mycorrhizal P. massoniana, providing a basis for the artificial afforestation of P. massoniana as a dominant tree species in the Three Gorges Reservoir area.
[1] |
Galloway JN,Townsend AR,Erisman JW,Bekunda M,Cai ZC,et al. Transformation of the nitrogen cycle:recent trends,questions,and potential solutions[J]. Science,2008,320 (5878):889−892. doi: 10.1126/science.1136674
|
[2] |
Yu GR,Jia YL,He NP,Zhu JX,Chen Z,et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nat Geosci,2019,12 (6):424−429. doi: 10.1038/s41561-019-0352-4
|
[3] |
Du YG,Ke X,Li JM,Wang YY,Cao GM,et al. Nitrogen deposition increases global grassland N2O emission rates steeply:a meta-analysis[J]. Catena,2021,199:105105. doi: 10.1016/j.catena.2020.105105
|
[4] |
Wang YB,Jiang Q,Yang ZM,Sun W,Wang DL. Effects of water and nitrogen addition on ecosystem carbon exchange in a Meadow Steppe[J]. PLoS One,2015,10 (5):e0127695. doi: 10.1371/journal.pone.0127695
|
[5] |
王丽君,程瑞梅,肖文发,沈雅飞,曾立雄,等. 三峡库区马尾松人工林土壤酶活性和微生物生物量对氮添加的季节性响应[J]. 生态学报,2021,41(24):9857−9868. Wang LJ,Cheng RM,Xiao WF,Shen YF,Zeng LX,et al. Seasonal responses of soil enzyme activities and microbial biomass to nitrogen addition at different levels in Pinus massoniana plantation in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica,2021,41 (24):9857−9868.
Wang LJ, Cheng RM, Xiao WF, Shen YF, Zeng LX, et al. Seasonal responses of soil enzyme activities and microbial biomass to nitrogen addition at different levels in Pinus massoniana plantation in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2021, 41(24): 9857-9868.
|
[6] |
Lu XK,Mo JM,Gilliam FS,Zhou GD,Fang YT. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest[J]. Global Change Biol,2010,16 (10):2688−2700. doi: 10.1111/j.1365-2486.2010.02174.x
|
[7] |
Zhang XF,Misra A,Nargund S,Coleman GD,Sriram G. Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply[J]. Plant J,2018,93 (3):472−488. doi: 10.1111/tpj.13792
|
[8] |
Xia JY,Wan SQ. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytol,2008,179 (2):428−439. doi: 10.1111/j.1469-8137.2008.02488.x
|
[9] |
Cleveland CC,Townsend AR,Taylor P,Alvarez-Clare S,Bustamante MMC,et al. Relationships among net primary productivity,nutrients and climate in tropical rain forest:a pan-tropical analysis[J]. Ecol Lett,2011,14 (12):1313−1317. doi: 10.1111/j.1461-0248.2011.01711.x
|
[10] |
Zheng LL,Zhao Q,Yu ZY,Zhao SY,Zeng DH. Altered leaf functional traits by nitrogen addition in a nutrient-poor pine plantation:a consequence of decreased phosphorus availability[J]. Sci Rep,2017,7 (1):7415. doi: 10.1038/s41598-017-07170-3
|
[11] |
Manning P,Newington JE,Robson HR,Saunders M,Eggers T,et al. Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function[J]. Ecol Lett,2006,9 (9):1015−1024. doi: 10.1111/j.1461-0248.2006.00959.x
|
[12] |
Pisani O,Frey SD,Simpson AJ,Simpson MJ. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level[J]. Biogeochemistry,2015,123 (3):391−409. doi: 10.1007/s10533-015-0073-8
|
[13] |
Treseder KK. Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies[J]. Ecol Lett,2008,11 (10):1111−1120. doi: 10.1111/j.1461-0248.2008.01230.x
|
[14] |
Su Y,Ma XF,Gong YM,Li KH,Han WX,Liu XJ. Responses and drivers of leaf nutrients and resorption to nitrogen enrichment across northern China’s grasslands:a meta-analysis[J]. Catena,2021,199:105−110.
|
[15] |
Frey SD. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Ann Rev Ecol Evolut Systemat,2019,50 (1):237−259. doi: 10.1146/annurev-ecolsys-110617-062331
|
[16] |
刘润进,唐明,陈应龙. 菌根真菌与植物抗逆性研究进展[J]. 菌物研究,2017,15(1):70−88. Liu RJ,Tang M,Chen YL. Recent advances in the study of mycorrhizal fungi and stress resistance of plants[J]. Journal of Fungal Research,2017,15 (1):70−88.
Liu RJ, Tang M, Chen YL. Recent advances in the study of mycorrhizal fungi and stress resistance of plants[J]. Journal of Fungal Research, 2017, 15(1): 70-88.
|
[17] |
Plett KL,Singan VR,Wang M,Ng V,Grigoriev IV,et al. Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer[J]. New Phytol,2020,226 (1):221−231. doi: 10.1111/nph.16322
|
[18] |
Nehls U,Göhringer F,Wittulsky S,Dietz S. Fungal carbohydrate support in the ectomycorrhizal symbiosis:a review[J]. Plant Biol,2010,12 (2):292−301. doi: 10.1111/j.1438-8677.2009.00312.x
|
[19] |
Lindahl BD,Tunlid A. Ectomycorrhizal fungi-potential organic matter decomposers,yet not saprotrophs[J]. New Phytol,2015,205 (4):1443−1447. doi: 10.1111/nph.13201
|
[20] |
Luciano A,Oliveira VL,Filho GNS. Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt[J]. Brazil J Microbiol,2010,41 (3):676−684. doi: 10.1590/S1517-83822010000300018
|
[21] |
Smits MM,Bonneville S,Benning LG,Banwart SA,Leake JR. Plant-driven weathering of apatite-the role of an ectomycorrhizal fungus[J]. Geobiology,2012,10 (5):445−456. doi: 10.1111/j.1472-4669.2012.00331.x
|
[22] |
Plett KL,Snijders F,Castañeda-Gómez L,Wong-Bajracharya JWH,Anderson IC,et al. Nitrogen fertilization differentially affects the symbiotic capacity of two co-occurring ectomycorrhizal species[J]. Environ Microbiol,2022,24 (1):309−323. doi: 10.1111/1462-2920.15879
|
[23] |
张雪,梅莉,宋利豪,刘力诚,赵泽尧. 模拟氮沉降对马尾松土壤微生物群落结构及温室气体释放的影响[J]. 生态学报,2019,39(6):1917−1925. Zhang X,Mei L,Song LH,Liu LC,Zhao ZY. Effects of simulated nitrogen deposition on microbial community and greenhouse gases emission of Pinus massoniana soil[J]. Acta Ecologica Sinica,2019,39 (6):1917−1925.
Zhang X, Mei L, Song LH, Liu LC, Zhao ZY. Effects of simulated nitrogen deposition on microbial community and greenhouse gases emission of Pinus massoniana soil[J]. Acta Ecologica Sinica, 2019, 39(6): 1917-1925.
|
[24] |
Kwaku EA,Dong SK,Shen H,Li W,Sha W,et al. Biomass and species diversity of different alpine plant communities respond differently to nitrogen deposition and experimental warming[J]. Plants,2021,10 (12):2719. doi: 10.3390/plants10122719
|
[25] |
Wang JJ,Hussain S,Sun X,Zhang P,Javed T,et al. Effects of nitrogen application rate under straw incorporation on photosynthesis,productivity and nitrogen use efficiency in winter wheat[J]. Front Plant Sci,2022,13:862088. doi: 10.3389/fpls.2022.862088
|
[26] |
Högberg MN,Högberg P,Wallander H,Nilsson LO. Carbon-nitrogen relations of ectomycorrhizal mycelium across a natural nitrogen supply gradient in boreal forest[J]. New Phytol,2021,232 (4):1839−1848. doi: 10.1111/nph.17701
|
[27] |
薛璟花,莫江明,李炯,方运霆,李德军. 氮沉降对外生菌根真菌的影响[J]. 生态学报,2004,24(8):1785−1792. Xue JH,Mo JM,Li J,Fang YT,Li DJ. Effects of nitrogen deposition on ectomycorrhizal fungi[J]. Acta Ecologica Sinica,2004,24 (8):1785−1792.
Xue JH, Mo JM, Li T, Fang YT, Li DJ. Effects of nitrogen deposition on ectomycorrhizal fungi[J]. Acta Ecologica Sinica, 2004, 24(8): 1785-1792.
|
[28] |
方兴,钟章成. 增强UV-B辐射和氮对谷子叶光合色素及非酶促保护物质的影响[J]. 生态学报,2012,32(23):7411−7420. Fang X,Zhong ZC. Effects of enhanced UV-B radiation and nitrogen on photosynthetic pigments and non-enzymatic protection system in leaves of foxtail millet (Setaria italica (L. ) Beauv. )[J]. Acta Ecologica Sinica,2012,32 (23):7411−7420. doi: 10.5846/stxb201201160095
Fang X, Zhong ZC. Effects of enhanced UV-B radiation and nitrogen on photosynthetic pigments and non-enzymatic protection system in leaves of foxtail millet (Setaria italica (L. ) Beauv. )[J]. Acta Ecologica Sinica, 2012, 32(23): 7411-7420. doi: 10.5846/stxb201201160095
|
[29] |
兰艳,伍鑫,王锦,吴超越,段强,等. 施氮量对绿米稻叶绿素含量及光合特性的影响[J]. 云南农业大学学报(自然科学),2021,36(4):566−572. Lan Y,Wu X,Wang J,Wu CY,Duan Q,et al. Effect of nitrogen application rates on the chlorophyll content and photosynthetic characteristics of green rice[J]. Journal of Yunnan Agricultural University (Natural Science)
Lan Y, Wu X, Wang J, Wu CY, Duan Q, et al. Effect of nitrogen application rates on the chlorophyll content and photosynthetic characteristics of green rice[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(4): 566-572. doi: 10.12101/j.issn.1004-390X(n).202007016
|
[30] |
彭思利,王晓燕,李剑,夏大娟,葛之葳,薛建辉. 外生菌根真菌接种对干旱胁迫下构树幼苗生长及光合特性的影响[J]. 生态学杂志,2021,40(9):2719−2726. Peng SL,Wang XY,Li J,Xia DJ,Ge ZW,Xue JH. Effects of ectomycorrhizal fungi inoculation on growth and photosynthetic characteristics of Broussonetia papyrifera seedlings under drought stress[J]. Chinese Journal of Ecology,2021,40 (9):2719−2726.
Peng SL, Wang XY, Li J, Xia DJ, Ge ZW, Xue JH. Effects of ectomycorrhizal fungi inoculation on growth and photosynthetic characteristics of Broussonetia papyrifera seedlings under drought stress[J]. Chinese Journal of Ecology, 2021, 40(9): 2719-2726.
|
[31] |
胡倩,刘天泉,陈晓龙,王凌晖,滕维超. 模拟氮沉降对桢楠幼苗生理特性的影响[J]. 广西林业科学,2018,47(4):469−472. Hu Q,Liu TQ,Chen XL,Wang LH,Teng WC. Effects of nitrogen deposition on physiological characteristics of phoebe Zhennan seedlings[J]. Guangxi Forestry Science,2018,47 (4):469−472.
Hu Q, Liu TQ, Chen XL, Wang LH, Teng WC. Effects of nitrogen deposition on physiological characteristics of phoebe Zhennan seedlings[J]. Guangxi Forestry Science, 2018, 47(4): 469-472.
|
[32] |
彭礼琼,金则新,王强. 模拟氮沉降对夏蜡梅幼苗生理生态特性的影响[J]. 生态学杂志,2014,33(4):989−995. Peng LQ,Jin ZX,Wang Q. Effects of simulated nitrogen deposition on the eco-physiological characteristics of Sinocalycanthus chinensis seedlings[J]. Chinese Journal of Ecology,2014,33 (4):989−995.
Peng LQ, Jin ZX, Wang Q. Effects of simulated nitrogen deposition on the eco-physiological characteristics of Sinocalycanthus chinensis seedlings[J]. Chinese Journal of Ecology, 2014, 33(4): 989-995.
|
[33] |
Wang GJ,Zeng FL,Song S,Sun B,Wang Q,Wang JY. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves[J]. J Plant Physiol,2022,272:153669. doi: 10.1016/j.jplph.2022.153669
|
[34] |
Galardis MMB,Sánchez RCL,Fall F,Eichler-Löbermann B,Pruneau L,Bâ AM. Growth and physiological responses of ectomycorrhizal Coccoloba uvifera (L. ) L. seedlings to salt stress[J]. J Arid Environ,2022,196:104650. doi: 10.1016/j.jaridenv.2021.104650
|
[35] |
刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007: 225-227.
|
[36] |
李文娆,李永竞,冯士珍. 不同施氮量和分施比例对棉花幼苗生长和水分利用效率的影响及其根源ABA调控效应[J]. 生态学报,2017,37(20):6712−6723. Li WR,Li YJ,Feng SZ. Regulation of root-sourced ABA to growth and water use efficiency of cotton seedlings and their response to different nitrogen levels and distribution ratios[J]. Acta Ecologica Sinica,2017,37 (20):6712−6723.
Li WR, Li YJ, Feng SZ. Regulation of root-sourced ABA to growth and water use efficiency of cotton seedlings and their response to different nitrogen levels and distribution ratios[J]. Acta Ecologica Sinica, 2017, 37(20): 6712-6723.
|
[37] |
Wu F,Zhang HQ,Fang FR,Wu N,Zhang YX,Tang M. Effects of nitrogen and exogenous Rhizophagus irregularis on the nutrient status,photosynthesis and leaf anatomy of Populus × canadensis 'Neva'[J]. J Plant Growth Regulat,2017,36 (4):824−835. doi: 10.1007/s00344-017-9686-6
|
[38] |
展小云,于贵瑞,盛文萍,方华军. 中国东部南北样带森林优势植物叶片的水分利用效率和氮素利用效率[J]. 应用生态学报,2012,23(3):587−594. Zhan XY,Yu GR,Sheng WP,Fang HJ. Foliar water use efficiency and nitrogen use efficiency of dominant plant species in main forests along the North-South Transect of East China[J]. Chinese Journal of Applied Ecology,2012,23 (3):587−594.
Zhan XY, Yu GR, Sheng WP, Fang HJ. Foliar water use efficiency and nitrogen use efficiency of dominant plant species in main forests along the North-South Transect of East China[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 587-594.
|
1. |
张曼华,谢元贵,田秀,张蓝月,廖小锋,王军才. 土壤微生物对4种森林类型植物多样性形成的影响. 中南林业科技大学学报. 2025(01): 26-38 .
![]() |