Citation: | Wang T,Huang XY,Sun Z,Fan ZH,Ze ZH,Zhang MY,Liu CH. Sexual and asexual reproductive strategies of submerged plant, Potamogeton crispus L., under simulated warming[J]. Plant Science Journal,2023,41(3):380−387. DOI: 10.11913/PSJ.2095-0837.22186 |
The cosmopolitan submerged plant, Potamogeton crispus L., was used as a model species to study the effects of climate warming on reproduction. Turions from four different geographic temperate regions in China were used for the mesocosm experiment. A glasshouse experiment was used to mimic climate warming of 2.0 ℃–5.8 ℃. Number and biomass of turions and fruits were selected as proxies for asexual and sexual reproduction, respectively. Based on the potential correlation between scale leaf number of the turions and fitness of asexual propagules, the turions were classified into two categories: oligophyllous (scale leaf number ≤ 4) and pleiophyllous turions (scale leaf number > 4). Geographic sources and warming conditions significantly affected asexual and sexual reproduction in P. crispus. Although simulated warming had different effects on turion number in different clonal populations, total turion biomass did not decrease. Simulated warming led to a decrease in the percentage of oligophyllous turions and an increase in the percentage of pleiophyllous turions. Moreover, simulated warming led to total loss of sexual reproduction in three clonal populations. As P. crispus is mainly hydrophilous, we speculate that warming destroyed pollen viability, resulting in the total loss of sexual reproduction. The scale leaves were capable of nutrient storage and photosynthesis. Additionally, a positive correlation was found between scale leaf number and axillary bud number. We speculate that P. crispus maintains fitness via the production of larger-size asexual propagules under warming conditions as a reproductive life-history strategy to cope with climate warming.
[1] |
Sun Y,Hu T,Zhang XB. Substantial increase in heat wave risks in China in a future warmer world[J]. Earth’s Future,2018,6 (11):1528−1538. doi: 10.1029/2018EF000963
|
[2] |
李雪莹,朱文泉,李培先,谢志英,赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报,2020,44(7):742−751. doi: 10.17521/cjpe.2019.0308
Li XY,Zhu WQ,Li PX,Xie ZY,Zhao CL. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method[J]. Chinese Journal of Plant Ecology,2020,44 (7):742−751. doi: 10.17521/cjpe.2019.0308
|
[3] |
Baldwin JW,Dessy JB,Vecchi GA,Oppenheimer M. Temporally compound heat wave events and global warming:an emerging hazard[J]. Earth’s Future,2019,7 (4):411−427. doi: 10.1029/2018EF000989
|
[4] |
Elias SA. Global change impacts on the biosphere[M]//DellaSala DA, Goldstein MI, eds. Encyclopedia of the Anthropocene. Amsterdam: Elsevier, 2018: 81-94.
|
[5] |
Audet J,Neif ÉM,Cao Y,Hoffmann CC,Lauridsen TL,et al. Heat-wave effects on greenhouse gas emissions from shallow lake mesocosms[J]. Freshwater Biol,2017,62 (7):1130−1142. doi: 10.1111/fwb.12930
|
[6] |
Dolezal J,Kurnotova M,Stastna P,Klimesova J. Alpine plant growth and reproduction dynamics in a warmer world[J]. New Phytol,2020,228 (4):1295−1305. doi: 10.1111/nph.16790
|
[7] |
Klady RA,Henry GHR,Lemay V. Changes in high arctic tundra plant reproduction in response to long-term experimental warming[J]. Global Change Biol,2011,17 (4):1611−1624. doi: 10.1111/j.1365-2486.2010.02319.x
|
[8] |
Mooij WM,de Senerpont Domis LN,Hülsmann S. The impact of climate warming on water temperature,timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands[J]. J Sea Res,2008,60 (1-2):32−43. doi: 10.1016/j.seares.2008.03.002
|
[9] |
Wu H,Ding JQ. Global change sharpens the double-edged sword effect of aquatic alien plants in China and beyond[J]. Front Plant Sci,2019,10:787. doi: 10.3389/fpls.2019.00787
|
[10] |
Zhang PY,Grutters BMC,van Leeuwen CHA,Xu J,Petruzzella A,et al. Effects of rising temperature on the growth,stoichiometry,and palatability of aquatic plants[J]. Front Plant Sci,2019,9:1947. doi: 10.3389/fpls.2018.01947
|
[11] |
张婵,安宇梦,Jäschke Y,王林林,周知里,等. 青藏高原及周边高山地区的植物繁殖生态学研究进展[J]. 植物生态学报,2020,44(1):1−21. doi: 10.17521/cjpe.2019.0296
Zhang C,An YM,Jäschke Y,Wang LL,Zhou ZL,et al. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands[J]. Chinese Journal of Plant Ecology,2020,44 (1):1−21. doi: 10.17521/cjpe.2019.0296
|
[12] |
Franklin S,Alpert P,Salguero-Gómez R,Janovský Z,Herben T,et al. Next-gen plant clonal ecology[J]. Perspect Plant Ecol Evol Syst,2021,49:125601. doi: 10.1016/j.ppees.2021.125601
|
[13] |
Liu JC,Chen XW,Wang YL,Li X,Yu D,Liu CH. Response differences of Eichhornia crassipes to shallow submergence and drawdown with an experimental warming in winter[J]. Aquat Ecol,2016,50 (2):307−314. doi: 10.1007/s10452-016-9579-y
|
[14] |
Silveira MJ,Thiébaut G. Impact of climate warming on plant growth varied according to the season[J]. Limnologica,2017,65:4−9. doi: 10.1016/j.limno.2017.05.003
|
[15] |
Yan ZW,Wang QY,Li Y,Wu L,Wang JN,et al. Combined effects of warming and nutrient enrichment on water properties,growth,reproductive strategies and nutrient stoichiometry of Potamogeton crispus[J]. Environ Exp Bot,2021,190:104572. doi: 10.1016/j.envexpbot.2021.104572
|
[16] |
Li ZQ,He L,Zhang H,Urrutia-Cordero P,Ekvall MK,et al. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes[J]. Global Change Biol,2017,23 (1):108−116. doi: 10.1111/gcb.13405
|
[17] |
Xu J,Wang T,Molinos JG,Li C,Hu BW,et al. Effects of warming,climate extremes and phosphorus enrichment on the growth,sexual reproduction and propagule carbon and nitrogen stoichiometry of Potamogeton crispus L[J]. Environ Int,2020,137:105502. doi: 10.1016/j.envint.2020.105502
|
[18] |
Li C,Wang T,Zhang M,Xu J. Maternal environment effect of warming and eutrophication on the emergence of curled pondweed,Potamogeton crispus L.[J]. Water,2018,10 (9):1285. doi: 10.3390/w10091285
|
[19] |
Wang T,Shao RY,Zhu PC,Wang RQ. The reproductive strategy of the clonal helophyte Leersia oryzoides (L. ) Swartz. in response to variable submergence conditions and different harvest times[J]. Evol Ecol,2021,35 (1):27−40. doi: 10.1007/s10682-020-10092-8
|
[20] |
Barrett SCH. Influences of clonality on plant sexual reproduction[J]. Proc Natl Acad Sci USA,2015,112 (29):8859−8866. doi: 10.1073/pnas.1501712112
|
[21] |
Stotz GC,Salgado-Luarte C,Escobedo VM,Valladares F,Gianoli E. Global trends in phenotypic plasticity of plants[J]. Ecol Lett,2021,24 (10):2267−2281. doi: 10.1111/ele.13827
|
[22] |
Wu ZG,Li X,Xie D,Wang HJ,Zhang ZQ,et al. Spatial genetic structuring in a widespread wetland plant on a plateau:effects of elevation-driven geographic isolation and environmental heterogeneity[J]. Freshwater Biol,2020,65 (9):1596−1607. doi: 10.1111/fwb.13525
|
[23] |
Gillard MB,Drenovsky RE,Thiébaut G,Tarayre M,Futrell CJ,Grewell BJ. Seed source regions drive fitness differences in invasive macrophytes[J]. Am J Bot,2020,107 (5):749−760. doi: 10.1002/ajb2.1475
|
[24] |
Xie D,Zhou HJ,Zhu H,Ji HT,Li N,An SQ. Differences in the regeneration traits of Potamogeton crispus turions from macrophyte- and phytoplankton-dominated lakes[J]. Sci Rep,2015,5:12907. doi: 10.1038/srep12907
|
[25] |
Qian C,You WH,Xie D,Yu D. Turion morphological responses to water nutrient concentrations and plant density in the submerged macrophyte Potamogeton crispus[J]. Sci Rep,2014,4:7079. doi: 10.1038/srep07079
|
[26] |
Adamec L. Ecophysiological characteristics of turions of aquatic plants:a review[J]. Aquat Bot,2018,148:64−77. doi: 10.1016/j.aquabot.2018.04.011
|
[27] |
李慧. 气候变暖条件下全球湖泊湖水混合特征变化研究[J]. 水利水电快报,2019,40(4):4.
|
[28] |
Li ZQ,Xu ZY,Yang YJ,Stewart RIA,Urrutia-Cordero P,et al. Heat waves alter macrophyte-derived detrital nutrients release under future climate warming scenarios[J]. Environ Sci Technol,2021,55 (8):5272−5281. doi: 10.1021/acs.est.1c00884
|
[29] |
Qiao XQ,Zheng ZZ,Zhang LF,Wang JH,Shi GX,Xu XY. Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.:subcellular distribution,polyamines and proline[J]. Chemosphere,2015,120:179−187. doi: 10.1016/j.chemosphere.2014.06.055
|
[30] |
Yu HW,Shen N,Yu SQ,Yu D,Liu CH. Responses of the native species Sparganium angustifolium and the invasive species Egeria densa to warming and interspecific competition[J]. PLoS One,2018,13 (6):e0199478. doi: 10.1371/journal.pone.0199478
|
[31] |
郭友好,黄双全. 茨藻目植物柱头特征与传粉系统的演化[J]. 植物分类学报,1999,37(2):131−136.
Guo YH,Huang SQ. Evolution of pollination system and characters of stigmas in Najadales[J]. Acta Phytotaxonomica Sinica,1999,37 (2):131−136.
|
[32] |
Rang ZW,Jagadish SVK,Zhou QM,Craufurd PQ,Heuer S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice[J]. Environ Exp Bot,2011,70 (1):58−65. doi: 10.1016/j.envexpbot.2010.08.009
|
[33] |
Santamarı́a L,Hootsmans MJM. The effect of temperature on the photosynthesis,growth and reproduction of a Mediterranean submerged macrophyte,Ruppia drepanensis[J]. Aquat Bot,1998,60 (2):169−188. doi: 10.1016/S0304-3770(97)00050-8
|
[34] |
Wang T,Dou HR,Liu CH,Yu D. Decoupling between plant growth and functional traits of the free-floating fern Salvinia natans under shifted water nutrient stoichiometric regimes[J]. Flora,2021,281:151876. doi: 10.1016/j.flora.2021.151876
|
[35] |
Li L,Lan ZC,Chen JK,Song ZP. Allocation to clonal and sexual reproduction and its plasticity in Vallisneria spinulosa along a water-depth gradient[J]. Ecosphere,2018,9 (1):e02070.
|
[36] |
Herben T,Šerá B,Klimešová J. Clonal growth and sexual reproduction:tradeoffs and environmental constraints[J]. Oikos,2015,124 (4):469−476. doi: 10.1111/oik.01692
|
[37] |
Scrine J,Jochum M,Ólafsson JS,O'Gorman EJ. Interactive effects of temperature and habitat complexity on freshwater communities[J]. Ecol Evol,2017,7 (22):9333−9346. doi: 10.1002/ece3.3412
|
[1] | Wang Wan-Wan, Lu Zhen-Wei, Yuan Long-Yi, Jiang Hong-Sheng. Effects of silver nanoparticles on dormant bud germination, seedling survival, and growth of Spirodela polyrhiza (L.) Schleid[J]. Plant Science Journal, 2022, 40(4): 576-583. DOI: 10.11913/PSJ.2095-0837.2022.40576 |
[2] | Kong Ling-Pu, Zhu Yong-Jie, Qiu Mei, Wang Huan-Chong, He Zhao-Rong. Effects of physical and chemical factors on seed germination of Bupleurum dracaenoides[J]. Plant Science Journal, 2017, 35(3): 421-426. DOI: 10.11913/PSJ.2095-0837.2017.30421 |
[3] | WANG Xue-Jing, BU Hai-Yan, ZHOU Xian-Hui, XU Dang-Hui, LIU Wei, QI Wei, GE Wen-Jing. Effect of Seed Shape on Germination in an Alpine Meadow on the Eastern Qinghai-Tibet Plateau[J]. Plant Science Journal, 2016, 34(3): 391-396. DOI: 10.11913/PSJ.2095-0837.2016.30391 |
[4] | PU Yun-Hai, LIU Gui-Hua, LI Wei. Seed Germination of Potamogeton malaianus[J]. Plant Science Journal, 2005, 23(2): 179-182. |
[5] | HONG Lan, SHEN Hao, YANG Qi-He, CAO Hong-Lin, YE Wan-Hui. Studies on Seed Germination and Storage of the Invasive Alien Species Bidens pilosa L.[J]. Plant Science Journal, 2004, 22(5): 433-437. |
[6] | ZHOU Yuan, SUN Wei-Bang, Li Cong-Ren. Preliminary Study on Germination of Trigonobalanus doichangensis[J]. Plant Science Journal, 2003, 21(1): 73-76. |
[7] | YANG Qi-He, YIN Shou-Hua, XIA Yong-Mei, LAN Qin-Ying. Preliminary Study on Germination Capacity and Desiccation-tolerance of Cassia hirsuta Seeds at Various Developmental Stages[J]. Plant Science Journal, 2002, 20(4): 288-292. |
[8] | Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380. |
[9] | Xia Renxue, Peng Shuang, Chen Guilin, Hu Shiquan. STUDIES ON THE FACTORS INFLUENCING POLLEN GERMINATION OF CASTANEA MOLLISSIMA BL.[J]. Plant Science Journal, 1989, 7(4): 351-355. |
[10] | Wan Caigan. A STUDY ON DORMANCY AND PREGERMINATION OF THE VIBURNUM BETULIFOLIUM SEEDS[J]. Plant Science Journal, 1985, 3(2): 197-202. |