Citation: | Liu XL,Cao DD,Deng J,Yang PF,Lin ZY. Latest progress in molecular biological studies of Nelumbo[J]. Plant Science Journal,2023,41(3):388−399. DOI: 10.11913/PSJ.2095-0837.22192 |
Lotus (Nelumbo), as a basal eudicotyledon, is of great significance for studying the evolution and phylogeny of plants. It is also an economically important aquatic horticultural plant with ornamental, edible, and medicinal value. With the completion of genome sequencing, assembly, and annotation in the last decade, molecular level studies have greatly driven and expanded our understanding of all biological aspects of this species. In this review, we systematically discuss the latest advances in molecular biology studies of the lotus, with a focus on: (1) Recent progress in genomic research; (2) Genetic and multiomics studies of different horticultural traits and physiological processes; and (3) Characterization of key genes controlling important horticultural traits and their functions. Based on these, we also discuss current research challenges and future prospects.
[1] |
Huang LY,Yang M,Li L,Li H,Yang D,et al. Whole genome re-sequencing reveals evolutionary patterns of sacred lotus (Nelumbo nucifera)[J]. J Integr Plant Biol,2018,60 (1):2−15. doi: 10.1111/jipb.12606
|
[2] |
Ming R,van Buren R,Liu YL,Yang M,Han YP,et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn. )[J]. Genome Biol,2013,14 (5):R41. doi: 10.1186/gb-2013-14-5-r41
|
[3] |
Lin ZY,Zhang C,Cao DD,Damaris RN,Yang PF. The Latest studies on lotus (Nelumbo nucifera)-an emerging horticultural model plant[J]. Int J Mol Sci,2019,20 (15):3680. doi: 10.3390/ijms20153680
|
[4] |
Gui ST,Peng J,Wang XL,Wu ZH,Cao R,et al. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements[J]. Plant J,2018,94 (4):721−734. doi: 10.1111/tpj.13894
|
[5] |
Wang Y,Fan GY,Liu YM,Sun FM,Shi CC,et al. The sacred lotus genome provides insights into the evolution of flowering plants[J]. Plant J,2013,76 (4):557−567. doi: 10.1111/tpj.12313
|
[6] |
Shi T,Rahmani RS,Gugger PF,Wang MH,Li H,et al. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants[J]. Mol Biol Evol,2020,37 (8):2394−2413. doi: 10.1093/molbev/msaa105
|
[7] |
Li H,Yang XY,Zhang Y,Gao ZY,Liang YT,et al. Nelumbo genome database,an integrative resource for gene expression and variants of Nelumbo nucifera[J]. Sci Data,2021,8 (1):38. doi: 10.1038/s41597-021-00828-8
|
[8] |
Zheng XW,Wang T,Cheng T,Zhao LL,Zheng XF,et al. Genomic variation reveals demographic history and biological adaptation of the ancient relictual,lotus (Nelumbo Adans. )[J]. Hortic Res,2022,9:uhac029. doi: 10.1093/hr/uhac029
|
[9] |
Zheng P,Sun H,Liu J,Lin JS,Zhang XT,et al. Comparative analyses of American and Asian lotus genomes reveal insights into petal color,carpel thermogenesis and domestication[J]. Plant J,2022,110 (5):1498−1515. doi: 10.1111/tpj.15753
|
[10] |
Liu FL,Qin M,Li S,Zhang DS,Liu QQ,et al. Characterization of genomic variation from lotus (Nelumbo Adans.) mutants with wide and narrow tepals[J]. Horticulturae,2021,7 (12):593. doi: 10.3390/horticulturae7120593
|
[11] |
Huang LY,Li M,Cao DD,Yang PF. Genetic dissection of rhizome yield-related traits in Nelumbo nucifera through genetic linkage map construction and QTL mapping[J]. Plant Physiol Biochem,2021,160:155−165. doi: 10.1016/j.plaphy.2021.01.020
|
[12] |
Yang M,Zhu L,Xu L,Pan C,Liu Y. Comparative transcriptomic analysis of the regulation of flowering in temperate and tropical lotus (Nelumbo nucifera) by RNA-Seq[J]. Ann Appl Biol,2014,165 (1):73−95. doi: 10.1111/aab.12119
|
[13] |
Deng J,Chen S,Yin XJ,Wang K,Liu YL,et al. Systematic qualitative and quantitative assessment of anthocyanins,flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars[J]. Food Chem,2013,139 (1-4):307−312. doi: 10.1016/j.foodchem.2013.02.010
|
[14] |
Deng J,Fu ZY,Chen S,Damaris RN,Wang K,et al. Proteomic and epigenetic analyses of lotus (Nelumbo nucifera) petals between red and white cultivars[J]. Plant Cell Physiol,2015,56 (8):1546−1555. doi: 10.1093/pcp/pcv077
|
[15] |
邓娇,苏梦月,刘雪莲,欧克芳,户正荣,杨平仿. 基于转录组分析揭示双色花莲‘大洒锦’花色形成机理[J]. 园艺学报,2022,49(2):365−377.
Deng J,Su MY,Liu XL,Ou KF,Hu ZR,Yang PF. Transcriptome analysis revealed the formation mechanism of floral color of lotus 'dasajin' with bicolor petal[J]. Acta Horticulturae Sinica,2022,49 (2):365−377.
|
[16] |
Deng J,Li JJ,Su MY,Chen L,Yang PF. Characterization of key genes involved in anthocyanins biosynthesis in Nelumbo nucifera through RNA-Seq[J]. Aquat Bot,2021,174:103428. doi: 10.1016/j.aquabot.2021.103428
|
[17] |
Zhu HH,Yang JX,Xiao CH,Mao TY,Zhang J,Zhang HY. Differences in flavonoid pathway metabolites and transcripts affect yellow petal colouration in the aquatic plant Nelumbo nucifera[J]. BMC Plant Biol,2019,19 (1):277. doi: 10.1186/s12870-019-1886-8
|
[18] |
Lin ZY,Damaris RN,Shi T,Li JJ,Yang PF. Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo nucifera)[J]. BMC Genomics,2018,19 (1):554. doi: 10.1186/s12864-018-4950-0
|
[19] |
Lin ZY,Liu MH,Damaris RN,Nyong’A TM,Cao DD,et al. Genome-wide DNA methylation profiling in the lotus (Nelumbo nucifera) flower showing its contribution to the stamen petaloid[J]. Plants,2019,8 (5):135. doi: 10.3390/plants8050135
|
[20] |
Lin ZY,Cao DD,Damaris RN,Yang PF. Comparative transcriptomic analysis provides insight into carpel petaloidy in lotus (Nelumbo nucifera)[J]. PeerJ,2021,9:e12322. doi: 10.7717/peerj.12322
|
[21] |
Cao DD,Damaris RN,Zhang Y,Liu MH,Li M,Yang PF. Proteomic analysis showing the signaling pathways involved in the rhizome enlargement process in Nelumbo nucifera[J]. BMC Genomics,2019,20 (1):766. doi: 10.1186/s12864-019-6151-x
|
[22] |
Yang M,Zhu LP,Pan C,Xu LM,Liu YL,et al. Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera)[J]. Sci Rep,2015,5:13059. doi: 10.1038/srep13059
|
[23] |
Shi T,Wang K,Yang PF. The evolution of plant microRNAs:insights from a basal eudicot sacred lotus[J]. Plant J,2017,89 (3):442−457. doi: 10.1111/tpj.13394
|
[24] |
Li H,Yang XY,Wang QF,Chen JM,Shi T. Distinct methylome patterns contribute to ecotypic differentiation in the growth of the storage organ of a flowering plant (sacred lotus)[J]. Mol Ecol,2021,30 (12):2831−2845. doi: 10.1111/mec.15933
|
[25] |
Gao ZY,Li H,Yang XY,Yang PF,Chen JM,Shi T. Biased allelic expression in tissues of F1 hybrids between tropical and temperate lotus (Nelumbo nuicfera)[J]. Plant Mol Biol,2021,106 (1-2):207−220. doi: 10.1007/s11103-021-01138-8
|
[26] |
Chu P,Chen HH,Zhou YL,Li Y,Ding Y,et al. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor[J]. Planta,2012,235 (6):1271−1288. doi: 10.1007/s00425-011-1573-y
|
[27] |
Moro CF,Fukao Y,Shibato J,Rakwal R,Agrawal GK,et al. Immature seed endosperm and embryo proteomics of the lotus (Nelumbo Nucifera Gaertn. ) by one-dimensional gel-based tandem mass spectrometry and a comparison with the mature endosperm proteome[J]. Proteomes,2015,3 (3):184−235. doi: 10.3390/proteomes3030184
|
[28] |
Moro CF,Fukao Y,Shibato J,Rakwal R,Timperio AM,et al. Unraveling the seed endosperm proteome of the lotus (Nelumbo nucifera Gaertn. ) utilizing 1DE and 2DE separation in conjunction with tandem mass spectrometry[J]. Proteomics,2015,15 (10):1717−1735. doi: 10.1002/pmic.201400406
|
[29] |
Liu YL,Chaturvedi P,Fu JL,Cai QQ,Weckwerth W,Yang PF. Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn. spp. baijianlian)[J]. J Proteom,2016,131:61−70. doi: 10.1016/j.jprot.2015.10.010
|
[30] |
Hu JH,Jin J,Qian Q,Huang KK,Ding Y. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera[J]. BMC Genomics,2016,17 (1):684. doi: 10.1186/s12864-016-3032-4
|
[31] |
Li JJ,Shi T,Huang LY,He DL,Nyong’A TM,Yang PF. Systematic transcriptomic analysis provides insights into lotus (Nelumbo nucifera) seed development[J]. Plant Growth Regul,2018,86 (3):339−350. doi: 10.1007/s10725-018-0433-1
|
[32] |
Cheng LB,Han YY,Liu HY,Jiang RZ,Li SY. Transcriptomic analysis reveals ethylene’s regulation involved in adventitious roots formation in lotus (Nelumbo nucifera Gaertn. )[J]. Acta Physiol Plant,2019,41 (6):97. doi: 10.1007/s11738-019-2895-9
|
[33] |
Cheng LB,Zhao MR,Hu ZB,Liu HY,Li SY. Comparative transcriptome analysis revealed the cooperative regulation of sucrose and IAA on adventitious root formation in lotus (Nelumbo nucifera Gaertn.)[J]. BMC Genomics,2020,21 (1):653. doi: 10.1186/s12864-020-07046-3
|
[34] |
Zou Y,Chen GL,Jin J,Wang Y,Xu ML,et al. Small RNA and transcriptome sequencing reveals miRNA regulation of floral thermogenesis in Nelumbo nucifera[J]. Int J Mol Sci,2020,21 (9):3324. doi: 10.3390/ijms21093324
|
[35] |
Sun YY,Zou Y,Jin J,Chen H,Liu ZY,et al. DIA-based quantitative proteomics reveals the protein regulatory networks of floral thermogenesis in Nelumbo nucifera[J]. Int J Mol Sci,2021,22 (15):8251. doi: 10.3390/ijms22158251
|
[36] |
Jin QJ,Xu YC,Mattson N,Li X,Wang B,et al. Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (Nelumbo nucifera Gaertn.)[J]. Front Plant Sci,2017,8:6.
|
[37] |
Deng XB,Yang D,Sun H,Liu J,Song HY,et al. Time-course analysis and transcriptomic identification of key response strategies of Nelumbo nucifera to complete submergence[J]. Hortic Res,2022,9:uhac001. doi: 10.1093/hr/uhac001
|
[38] |
Deng XB,Zhao L,Fang T,Xiong YQ,Ogutu C,et al. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus[J]. Hortic Res,2018,5:29. doi: 10.1038/s41438-018-0035-0
|
[39] |
Zhang Y,Nyong'A TM,Shi T,Yang PF. The complexity of alternative splicing and landscape of tissue-specific expression in lotus (Nelumbo nucifera) unveiled by Illumina- and single-molecule real-time-based RNA-sequencing[J]. DNA Res,2019,26 (4):301−311. doi: 10.1093/dnares/dsz010
|
[40] |
Li M,Hameed I,Cao DD,He DL,Yang PF. Integrated omics analyses identify key pathways involved in petiole rigidity formation in sacred lotus[J]. Int J Mol Sci,2020,21 (14):5087. doi: 10.3390/ijms21145087
|
[41] |
Sheng JY,Wang GD,Liu T,Xu Z,Zhang D. Comparative transcriptomic and proteomic profiling reveals molecular models of light signal regulation of shade tolerance in bowl lotus (Nelumbo nucifera)[J]. J Proteom,2022,257:104455. doi: 10.1016/j.jprot.2021.104455
|
[42] |
刘青青,张大生,刘凤栾,蔡栋,王晓晗,等. 荷花花色研究进展[J]. 园艺学报,2021,48(10):2100−2112.
Liu QQ,Zhang DS,Liu FL,Cai D,Wang XH,et al. Advances in flower color research on lotus (Nelumbo)[J]. Acta Horticulturae Sinica,2021,48 (10):2100−2112.
|
[43] |
Dong C,Yu AQ,Wang ML,Zheng XW,Diao Y,et al. Identification and characterization of chalcone synthase cDNAs (NnCHS) from Nelumbo nucifera[J]. Cell Mol Biol,2015,61 (8):112−117.
|
[44] |
Wang YJ,Chen YQ,Yuan M,Xue ZY,Jin QJ,Xu YC. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes in sacred Lotus[J]. J Am Soc Hortic Sci,2016,141 (6):573−582. doi: 10.21273/JASHS03848-16
|
[45] |
Liu QQ,Zhang DS,Liu FL,Liu ZX,Wang XH,et al. Quercetin-derivatives painting the yellow petals of American lotus (Nelumbo lutea) and enzymatic basis for their accumulation[J]. Hortic Plant J,2023,9 (1):169−182. doi: 10.1016/j.hpj.2022.02.001
|
[46] |
Naing AH,Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants[J]. Plant Mol Biol,2018,98 (1-2):1−18. doi: 10.1007/s11103-018-0771-4
|
[47] |
Sun SS,Gugger PF,Wang QF,Chen JM. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)[J]. PeerJ,2016,4:e2369. doi: 10.7717/peerj.2369
|
[48] |
Deng J,Li JJ,Su MY,Lin ZY,Chen L,Yang PF. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J]. Plant Physiol Biochem,2021,158:518−523. doi: 10.1016/j.plaphy.2020.11.038
|
[49] |
Kong DZ,Shen XY,Guo B,Dong JX,Li YH,Liu YP. Cloning and expression of an APETALA1-like gene from Nelumbo nucifera[J]. Genet Mol Res,2015,14 (2):6819−6829. doi: 10.4238/2015.June.18.24
|
[50] |
Liu ZL,Gu CS,Chen FD,Jiang JF,Yang YH,et al. Identification and expression of an APETALA2-like gene from Nelumbo nucifera[J]. Appl Biochem Biotechnol,2012,168 (2):383−391. doi: 10.1007/s12010-012-9782-9
|
[51] |
丁献华,陈伟,张直峰. 荷花B类MADS-box基因家族NnDEF基因的克隆及表达分析[J]. 上海农业学报,2020,36(1):1−7.
Ding XH,Chen W,Zhang ZF. Cloning and expression analysis of the putative NnDEF gene from B-class MADS-box family in lotus[J]. Acta Agriculturae Shanghai,2020,36 (1):1−7.
|
[52] |
Kashiwamura Y,Matsuzawa R,Ishikawa Y,Shibata M,Higuchi Y. Reduced expression of C-class genes is associated with the multiple-petal phenotype in Nelumbo nucifera[J]. Hortic J,2020,89 (5):619−627. doi: 10.2503/hortj.UTD-214
|
[53] |
Lin ZY,Cao DD,Damaris RN,Yang PF. Genome-wide identification of MADS-box gene family in sacred lotus (Nelumbo nucifera) identifies a SEPALLATA homolog gene involved in floral development[J]. BMC Plant Biol,2020,20 (1):497. doi: 10.1186/s12870-020-02712-w
|
[54] |
Liu ZX,Zhang DS,Zhang WW,Xiong L,Liu QQ,et al. Molecular cloning and expression profile of class E genes related to sepal development in Nelumbo nucifera[J]. Plants,2021,10 (8):1629. doi: 10.3390/plants10081629
|
[55] |
丁献华,陈伟,张直峰. 荷花NnMADS6基因的分离与表达分析[J]. 分子植物育种,2020,18(7):2138−2145.
Ding XH,Chen W,Zhang ZF. Isolation and expression analysis of the NnMADS6 gene in lotus[J]. Molecular Plant Breeding,2020,18 (7):2138−2145.
|
[56] |
齐仙惠,巫东堂,李改珍,赵军良,李梅兰. 拟南芥成花调控途径的研究进展[J]. 山西农业大学学报(自然科学版),2018,38(9):1−7.
Qi XH,Wu DT,Li GZ,Zhao JL,Li ML. Regulation pathways of flowering in Arabidopsis thaliana[J]. Journal of Shanxi Agricultural University (Natural Science Edition)
|
[57] |
刘艺平,董姬秀,张曼,李创,李娜,孔德政. 荷花LEAFY基因的克隆及表达分析[J]. 植物生理学报,2014,50(2):203−208.
Liu YP,Dong JX,Zhang M,Li C,Li N,Kong DZ. Cloning and expression analysis of a LEAFY gene from lotus (Nelumbo nucifera Gaertn. )[J]. Plant Physiology Journal,2014,50 (2):203−208.
|
[58] |
Zhang L,Zhang F,Liu FB,Shen J,Wang JX,et al. The lotus NnFTIP1 and NnFT1 regulate flowering time in Arabidopsis[J]. Plant Sci,2021,302:110677. doi: 10.1016/j.plantsci.2020.110677
|
[59] |
Cao J,Jin QJ,Kuang JY,Wang YJ,Xu YC. Regulation of flowering timing by ABA-NnSnRK1 signaling pathway in lotus[J]. Int J Mol Sci,2021,22 (8):3932. doi: 10.3390/ijms22083932
|
[60] |
Cheng LB,Liu X,Yin JJ,Yang JQ,Li Y,et al. Activity and expression of ADP-glucose pyrophosphorylase during rhizome formation in lotus (Nelumbo nucifera Gaertn.)[J]. Bot Stud,2016,57 (1):26. doi: 10.1186/s40529-016-0140-z
|
[61] |
Zhu FL,Cheng N,Sun H,Diao Y,Hu ZL. Molecular cloning and characterization of a gene encoding soluble starch synthase Ⅲ (SSSⅢ) in lotus (Nelumbo nucifera)[J]. Biologia,2020,75 (2):279−288. doi: 10.2478/s11756-019-00341-9
|
[62] |
Cao DD,Lin ZY,Huang LY,Damaris RN,Yang PF. Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology[J]. BMC Genomics,2021,22 (1):171. doi: 10.1186/s12864-021-07473-w
|
[63] |
Cao DD,Lin ZY,Huang LY,Damaris RN,Li M,Yang PF. A CONSTANS-LIKE gene of Nelumbo nucifera could promote potato tuberization[J]. Planta,2021,253 (3):65. doi: 10.1007/s00425-021-03581-9
|
[64] |
Liu YL,Song HY,Zhang MH,Yang D,Deng XB,et al. Identification of QTLs and a putative candidate gene involved in rhizome enlargement of Asian lotus (Nelumbo nucifera)[J]. Plant Mol Biol,2022,110 (1-2):23−36. doi: 10.1007/s11103-022-01281-w
|
[65] |
Li W,Qi L,Lin XD,Chen HH,Ma ZQ,et al. The expression of manganese superoxide dismutase gene from Nelumbo nucifera responds strongly to chilling and oxidative stresses[J]. J Integr Plant Biol,2009,51 (3):279−286. doi: 10.1111/j.1744-7909.2008.00790.x
|
[66] |
Zhou YL,Chen HH,Chu P,Li Y,Tan B,et al. NnHSP17.5,a cytosolic class Ⅱ small heat shock protein gene from Nelumbo nucifera,contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis[J]. Plant Cell Rep,2012,31 (2):379−389. doi: 10.1007/s00299-011-1173-0
|
[67] |
Zhou YL,Chu P,Chen HH,Li Y,Liu J,et al. Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis[J]. Planta,2012,235 (3):523−537. doi: 10.1007/s00425-011-1527-4
|
[68] |
Chen HH,Chu P,Zhou Yl,Ding Y,Li Y,et al. Ectopic expression of NnPER1,a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant,enhances seed longevity and stress tolerance in Arabidopsis[J]. Plant J,2016,88 (4):608−619. doi: 10.1111/tpj.13286
|
[69] |
Cheng LB,Yang JJ,Yin L,Hui LC,Qian HM,et al. Transcription factor NnDREB1 from lotus improved drought tolerance in transgenic Arabidopsis thaliana[J]. Biol Plant,2017,61 (4):651−658. doi: 10.1007/s10535-017-0718-7
|
[70] |
Liu ZL,Gu CS,Chen FD,Yang DY,Wu KW,et al. Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana[J]. Appl Biochem Biotechnol,2012,166 (3):722−734. doi: 10.1007/s12010-011-9461-2
|
[71] |
Wu ZH,Gui ST,Wang SZ,Ding Y. Molecular evolution and functional characterisation of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera:novel insight into the evolution of the PAL family in angiosperms[J]. BMC Evol Biol,2014,14:100. doi: 10.1186/1471-2148-14-100
|
[72] |
Diao Y,Xu HX,Li GL,Yu AQ,Yu X,et al. Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice[J]. Mol Biol Rep,2014,41 (8):4919−4927. doi: 10.1007/s11033-014-3358-4
|
[73] |
Diao Y,Li GL,Yu AQ,Zheng XW,Xie KQ,et al. Cloning and characterization of the UBC gene from lotus (Nelumbo nucifera)[J]. Genet Mol Res,2016,15 (3):10.
|
[74] |
Li J,Xiong YC,Li Y,Ye SQ,Yin Q,et al. Comprehensive analysis and functional studies of WRKY transcription factors in Nelumbo nucifera[J]. Int J Mol Sci,2019,20 (20):5006. doi: 10.3390/ijms20205006
|
[75] |
Li J,Li Y,Dang MJ,Li S,Chen SM,et al. Jasmonate-responsive transcription factors NnWRKY70a and NnWRKY70b positively regulate benzylisoquinoline alkaloid biosynthesis in lotus (Nelumbo nucifera)[J]. Front Plant Sci,2022,13:862915. doi: 10.3389/fpls.2022.862915
|
[76] |
Liu ZY,Wang CF,Yang JJ,Liu X,Li LJ,et al. Molecular cloning and functional analysis of lotus salt-induced NnDREB2C,NnPIP1-2 and NnPIP2-1 in Arabidopsis thaliana[J]. Mol Biol Rep,2020,47 (1):497−506. doi: 10.1007/s11033-019-05156-0
|
[77] |
Yang XP,Wang ZY,Feng T,Li JJ,Huang LY,et al. Evolutionarily conserved function of the sacred lotus (Nelumbo nucifera Gaertn.) CER2-LIKE family in very-long-chain fatty acid elongation[J]. Planta,2018,248 (3):715−727. doi: 10.1007/s00425-018-2934-6
|
[78] |
Menéndez-Perdomo IM,Facchini PJ. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera)[J]. J Biol Chem,2020,295 (6):1598−1612. doi: 10.1074/jbc.RA119.011547
|
[79] |
Cheng LB,Zhao C,Zhao MR,Han YY,Li SY. Lignin synthesis,affected by sucrose in lotus (Nelumbo nucifera) seedlings,was involved in regulation of root formation in the Arabidopsis thanliana[J]. Int J Mol Sci,2022,23 (4):2250. doi: 10.3390/ijms23042250
|
[80] |
程婷婷. 病毒诱导PPO基因沉默在莲中的应用[D]. 杨凌: 西北农林科技大学, 2021: 19−24.
|
[81] |
Deng XB,Xiong YQ,Li J,Yang D,Liu J,et al. The establishment of an efficient callus induction system for lotus (Nelumbo nucifera)[J]. Plants,2020,9 (11):1436. doi: 10.3390/plants9111436
|
[82] |
陈青. 荷花NnTP1和NnTP2基因调控‘千瓣莲’花型形成的机理研究[D]. 福州: 福建农林大学, 2017: 55−61.
|
[1] | Wang Wan-Wan, Lu Zhen-Wei, Yuan Long-Yi, Jiang Hong-Sheng. Effects of silver nanoparticles on dormant bud germination, seedling survival, and growth of Spirodela polyrhiza (L.) Schleid[J]. Plant Science Journal, 2022, 40(4): 576-583. DOI: 10.11913/PSJ.2095-0837.2022.40576 |
[2] | Kong Ling-Pu, Zhu Yong-Jie, Qiu Mei, Wang Huan-Chong, He Zhao-Rong. Effects of physical and chemical factors on seed germination of Bupleurum dracaenoides[J]. Plant Science Journal, 2017, 35(3): 421-426. DOI: 10.11913/PSJ.2095-0837.2017.30421 |
[3] | WANG Xue-Jing, BU Hai-Yan, ZHOU Xian-Hui, XU Dang-Hui, LIU Wei, QI Wei, GE Wen-Jing. Effect of Seed Shape on Germination in an Alpine Meadow on the Eastern Qinghai-Tibet Plateau[J]. Plant Science Journal, 2016, 34(3): 391-396. DOI: 10.11913/PSJ.2095-0837.2016.30391 |
[4] | PU Yun-Hai, LIU Gui-Hua, LI Wei. Seed Germination of Potamogeton malaianus[J]. Plant Science Journal, 2005, 23(2): 179-182. |
[5] | HONG Lan, SHEN Hao, YANG Qi-He, CAO Hong-Lin, YE Wan-Hui. Studies on Seed Germination and Storage of the Invasive Alien Species Bidens pilosa L.[J]. Plant Science Journal, 2004, 22(5): 433-437. |
[6] | ZHOU Yuan, SUN Wei-Bang, Li Cong-Ren. Preliminary Study on Germination of Trigonobalanus doichangensis[J]. Plant Science Journal, 2003, 21(1): 73-76. |
[7] | YANG Qi-He, YIN Shou-Hua, XIA Yong-Mei, LAN Qin-Ying. Preliminary Study on Germination Capacity and Desiccation-tolerance of Cassia hirsuta Seeds at Various Developmental Stages[J]. Plant Science Journal, 2002, 20(4): 288-292. |
[8] | Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380. |
[9] | Xia Renxue, Peng Shuang, Chen Guilin, Hu Shiquan. STUDIES ON THE FACTORS INFLUENCING POLLEN GERMINATION OF CASTANEA MOLLISSIMA BL.[J]. Plant Science Journal, 1989, 7(4): 351-355. |
[10] | Wan Caigan. A STUDY ON DORMANCY AND PREGERMINATION OF THE VIBURNUM BETULIFOLIUM SEEDS[J]. Plant Science Journal, 1985, 3(2): 197-202. |