Advance Search
Li JY,Ping JY,Cui GF,Su YJ,Wang T. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal,2023,41(3):333−342. DOI: 10.11913/PSJ.2095-0837.22231
Citation: Li JY,Ping JY,Cui GF,Su YJ,Wang T. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal,2023,41(3):333−342. DOI: 10.11913/PSJ.2095-0837.22231

Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae

Funds: This work was supported by a grant from the National Natural Science Foundation of China (31770587)
More Information
  • Received Date: September 02, 2022
  • Revised Date: November 08, 2022
  • Available Online: July 02, 2023
  • The conserved rps2 gene cluster (rps2-atpI-atpH-atpF-atpA) is broken in the chloroplast genome of Campanulaceae. To explore whether the evolutionary rates of the related genes changed after the cluster was broken, we selected the chloroplast genome sequences of 50 Campanulaceae and two Menyanthaceae species to construct their phylogenetic relationships, and further analyzed the evolutionary rate, selection pressure, and adaptive evolutionary process of the rps2 gene cluster-related genes. Results showed that all species with a broken rps2 gene cluster in Campanulaceae were from Campanuloideae and formed monophyletic branches on the phylogenetic tree. Compared with the unbroken species, the mean evolutionary rate of the related genes decreased in the broken species. There were significant differences in the nonsynonymous substitution rate between genes. In adaptive evolutionary analysis, the site model detected positive-selection sites in the atpI and rps2 genes. Our findings suggest that the fragmentation of the gene cluster holds phylogenetic implications, leading to alterations in evolutionary rates and diverse evolutionary trajectories among individual genes.

  • [1]
    Zhu B,Qian F,Hou YF,Yang WC,Cai MX,Wu XM. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae)[J]. PLoS One,2021,16 (3):e0248556. doi: 10.1371/journal.pone.0248556
    [2]
    Chan CX,Gross J,Yoon HS,Bhattacharya D. Plastid origin and evolution:new models provide insights into old problems[J]. Plant Physiol,2011,155 (4):1552−1560. doi: 10.1104/pp.111.173500
    [3]
    Hsu CY,Wu CS,Chaw SM. Birth of four chimeric plastid gene clusters in Japanese umbrella pine[J]. Genome Biol Evol,2016,8 (6):1776−1784. doi: 10.1093/gbe/evw109
    [4]
    沈双欠,占传松,杨陈坤,罗杰. 植物代谢基因簇的研究进展[J]. 中国科学:生命科学,2021,51(12):1734−1746. doi: 10.1360/SSV-2021-0198

    Shen SQ,Zhan CS,Yang CK,Luo J. Research progress on plant biosynthetic gene cluster[J]. Scientia Sinica Vitae,2021,51 (12):1734−1746. doi: 10.1360/SSV-2021-0198
    [5]
    Perry AS,Brennan S,Murphy DJ,Kavanagh TA,Wolfe KH. Evolutionary re-organisation of a large operon in adzuki bean chloroplast DNA caused by inverted repeat movement[J]. DNA Res,2002,9 (5):157−162. doi: 10.1093/dnares/9.5.157
    [6]
    Guisinger MM,Kuehl JV,Boore JL,Jansen RK. Extreme reconfiguration of plastid genomes in the Angiosperm family Geraniaceae: rearrangements, repeats, and codon usage[J]. Mol Biol Evol,2011,28 (1):583−600. doi: 10.1093/molbev/msq229
    [7]
    Cai ZQ,Guisinger M,Kim HG,Ruck E,Blazier JC,et al. Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions[J]. J Mol Evol,2008,67 (6):696−704. doi: 10.1007/s00239-008-9180-7
    [8]
    Haberle RC,Fourcade HM,Boore JL,Jansen RK. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes[J]. J Mol Evol,2008,66 (4):350−361. doi: 10.1007/s00239-008-9086-4
    [9]
    Drager RG. Structure and transcript processing of a Euglena gracilis chloroplast operon encoding genes rps2, atpI, atpH, atpF, atpA and rps18[D]. Tucson: The University of Arizona, 1993: 13−19.
    [10]
    Stahl DJ,Rodermel SR,Bogorad L,Subramanian AR. Co-transcription pattern of an introgressed operon in the maize chloroplast genome comprising four ATP synthase subunit genes and the ribosomal rps2[J]. Plant Mol Biol,1993,21 (6):1069−1076. doi: 10.1007/BF00023603
    [11]
    Jansen RK, Ruhlman TA. Plastid genomes of seed plants[M]//Bock R, Knoop V, eds. Genomics of Chloroplasts and Mitochondria. Dordrecht: Springer, 2012: 103−126.
    [12]
    The Angiosperm Phylogeny Group,Chase MW,Christenhusz MJM,Fay MF,Byng JW,et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅳ[J]. Bot J Linn Soc,2016,181 (1):1−20. doi: 10.1111/boj.12385
    [13]
    Zhang X,Sun YX,Landis JB,Lv ZY,Shen J,et al. Plastome phylogenomic study of Gentianeae (Gentianaceae):widespread gene tree discordance and its association with evolutionary rate heterogeneity of plastid genes[J]. BMC Plant Biol,2020,20 (1):340. doi: 10.1186/s12870-020-02518-w
    [14]
    平晶耀,冯佩沛,郝静,栗锦烨,苏应娟,王艇. rps12基因在裸子植物中的分子进化式样[J]. 科学通报,2021,66(24):3182−3193. doi: 10.1360/TB-2020-1528

    Ping JY,Feng PP,Hao J,Li JY,Su YJ,Wang T. The molecular evolution pattern of rps12 gene in gymnosperms[J]. Chinese Science Bulletin,2021,66 (24):3182−3193. doi: 10.1360/TB-2020-1528
    [15]
    Bolger AM,Lohse M,Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics,2014,30 (15):2114−2120. doi: 10.1093/bioinformatics/btu170
    [16]
    Dierckxsens N,Mardulyn P,Smits G. NOVOPlasty:de novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Res,2017,45 (4):e18.
    [17]
    Zhao FQ,Zhao FG,Li T,Bryant DA. A new pheromone trail-based genetic algorithm for comparative genome assembly[J]. Nucleic Acids Res,2008,36 (10):3455−3462. doi: 10.1093/nar/gkn168
    [18]
    Greiner S,Lehwark P,Bock R. Organellar Genome DRAW (OGDRAW) version 1.3. 1:Expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Res,2019,47 (W1):W59−W64. doi: 10.1093/nar/gkz238
    [19]
    Kearse M,Moir R,Wilson A,Stones-Havas S,Cheung M,et al. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics,2012,28 (12):1647−1649. doi: 10.1093/bioinformatics/bts199
    [20]
    Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol,2016,33 (7):1870−1874. doi: 10.1093/molbev/msw054
    [21]
    Stamatakis A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics,2014,30 (9):1312−1313. doi: 10.1093/bioinformatics/btu033
    [22]
    Huelsenbeck JP,Ronquist F. MRBAYES:Bayesian inference of phylogenetic trees[J]. Bioinformatics,2001,17 (8):754−755. doi: 10.1093/bioinformatics/17.8.754
    [23]
    Pond SLK,Frost SDW,Muse SV. HyPhy:hypothesis testing using phylogenies[J]. Bioinformatics,2005,21 (5):676−679. doi: 10.1093/bioinformatics/bti079
    [24]
    Yang ZH. PAML 4:phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol,2007,24 (8):1586−1591. doi: 10.1093/molbev/msm088
    [25]
    Cosner ME,Raubeson LA,Jansen RK. Chloroplast DNA rearrangements in Campanulaceae:phylogenetic utility of highly rearranged genomes[J]. BMC Evol Biol,2004,4:27. doi: 10.1186/1471-2148-4-27
    [26]
    Cosner ME,Jansen RK,Palmer JD,Downie SR. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae):multiple inversions,inverted repeat expansion and contraction,transposition,insertions/deletions,and several repeat families[J]. Curr Genet,1997,31 (5):419−429. doi: 10.1007/s002940050225
    [27]
    Haberle RC. Phylogeny and comparative chloroplast genomics of the campanulaceae[D]. Austin: The University of Texas at Austin, 2006: 71−73.
    [28]
    Gray MW. Origin and evolution of plastid genomes and genes[M]//Bogorad L, Vasil IK, eds. The Molecular Biology of Plastids. New York: Academic Press, 1991: 303−330.
    [29]
    Belda E,Moya A,Silva FJ. Genome rearrangement distances and gene order phylogeny in γ-Proteobacteria[J]. Mol Biol Evol,2005,22 (6):1456−1467. doi: 10.1093/molbev/msi134
    [30]
    Shao RF,Dowton M,Murrell A,Barker SC. Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects[J]. Mol Biol Evol,2003,20 (10):1612−1619. doi: 10.1093/molbev/msg176
    [31]
    Jansen RK,Cai ZQ,Raubeson LA,Daniell H,Depamphilis CW,et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns[J]. Proc Natl Acad Sci USA,2007,104 (49):19369−19374. doi: 10.1073/pnas.0709121104
    [32]
    文艺. 桔梗科质体基因组进化研究[D]. 北京: 中国科学院大学, 2020: 33−34.
    [33]
    李易. 基因进化的同义与非同义替代计算及统计检验的比较分析[J]. 曲靖师范学院学报,2006,25(6):1−8. doi: 10.3969/j.issn.1009-8879.2006.06.001

    Li Y. Comparing and analysing on models of calculation and statistical testing of nosynonymous substitution rate and synonymous substitution rate during gene evolution[J]. Journal of Qujing Normal University,2006,25 (6):1−8. doi: 10.3969/j.issn.1009-8879.2006.06.001
    [34]
    Hahn A,Vonck J,Mills DJ,Meier T,Kühlbrandt W. Structure,mechanism,and regulation of the chloroplast ATP synthase[J]. Science,2018,360 (6389):eaat4318. doi: 10.1126/science.aat4318
    [35]
    张琳,彭连伟. 叶绿体ATP合酶生物发生的研究进展[J]. 植物生理学报,2019,55(6):703−710.

    Zhang L,Peng LW. Research progress on regulation mechanisms of biogenesis of chloroplast ATP synthase[J]. Plant Physiology Journal,2019,55 (6):703−710.
    [36]
    Miyagi T,Kapoor S,Sugita M,Sugiura M. Transcript analysis of the tobacco plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus type Ⅱ (NCⅡ) promoter upstream of the atpI coding sequence[J]. Mol Gen Genet,1998,257 (3):299−307. doi: 10.1007/s004380050651
    [37]
    Harris EH,Boynton JE,Gillham NW. Chloroplast ribosomes and protein synthesis[J]. Microbiol Rev,1994,58 (4):700−754. doi: 10.1128/mr.58.4.700-754.1994
  • Related Articles

    [1]Wang Wan-Wan, Lu Zhen-Wei, Yuan Long-Yi, Jiang Hong-Sheng. Effects of silver nanoparticles on dormant bud germination, seedling survival, and growth of Spirodela polyrhiza (L.) Schleid[J]. Plant Science Journal, 2022, 40(4): 576-583. DOI: 10.11913/PSJ.2095-0837.2022.40576
    [2]Kong Ling-Pu, Zhu Yong-Jie, Qiu Mei, Wang Huan-Chong, He Zhao-Rong. Effects of physical and chemical factors on seed germination of Bupleurum dracaenoides[J]. Plant Science Journal, 2017, 35(3): 421-426. DOI: 10.11913/PSJ.2095-0837.2017.30421
    [3]WANG Xue-Jing, BU Hai-Yan, ZHOU Xian-Hui, XU Dang-Hui, LIU Wei, QI Wei, GE Wen-Jing. Effect of Seed Shape on Germination in an Alpine Meadow on the Eastern Qinghai-Tibet Plateau[J]. Plant Science Journal, 2016, 34(3): 391-396. DOI: 10.11913/PSJ.2095-0837.2016.30391
    [4]PU Yun-Hai, LIU Gui-Hua, LI Wei. Seed Germination of Potamogeton malaianus[J]. Plant Science Journal, 2005, 23(2): 179-182.
    [5]HONG Lan, SHEN Hao, YANG Qi-He, CAO Hong-Lin, YE Wan-Hui. Studies on Seed Germination and Storage of the Invasive Alien Species Bidens pilosa L.[J]. Plant Science Journal, 2004, 22(5): 433-437.
    [6]ZHOU Yuan, SUN Wei-Bang, Li Cong-Ren. Preliminary Study on Germination of Trigonobalanus doichangensis[J]. Plant Science Journal, 2003, 21(1): 73-76.
    [7]YANG Qi-He, YIN Shou-Hua, XIA Yong-Mei, LAN Qin-Ying. Preliminary Study on Germination Capacity and Desiccation-tolerance of Cassia hirsuta Seeds at Various Developmental Stages[J]. Plant Science Journal, 2002, 20(4): 288-292.
    [8]Xu Zhenxiu, Hu Chunkui, Lan Shengyin. A TECHNIQUE OF OBSERVATION ON PARAFFIN SECTIONS WITH SCANNING ELECTRON MICROSCOPE[J]. Plant Science Journal, 1992, 10(4): 377-380.
    [9]Xia Renxue, Peng Shuang, Chen Guilin, Hu Shiquan. STUDIES ON THE FACTORS INFLUENCING POLLEN GERMINATION OF CASTANEA MOLLISSIMA BL.[J]. Plant Science Journal, 1989, 7(4): 351-355.
    [10]Wan Caigan. A STUDY ON DORMANCY AND PREGERMINATION OF THE VIBURNUM BETULIFOLIUM SEEDS[J]. Plant Science Journal, 1985, 3(2): 197-202.
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 张萌,陈着,何瑞瑞,徐杰,聂宏. 荷叶及其有效成分治疗代谢综合征研究进展. 辽宁中医药大学学报. 2025(01): 115-120 .
    2. 罗淑芬,杨何,孙露,胡花丽,周宏胜,刘雪松,凌军,张映曈,李鹏霞. NO参与褪黑素延缓莲子采后褐变的作用机理. 农业工程学报. 2024(21): 263-273 .
    3. 阎莹莹,张陈,张文会. 西藏蕨麻黄酮组成鉴定及抗氧化能力的研究. 食品安全质量检测学报. 2023(20): 86-95 .

    Other cited types(3)

Catalog

    Article views (205) PDF downloads (28) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return