Citation: | Jiang X,Deng CC,Wang DJ,Ye LP,Zheng Y,Wang P,Zuo J. Effects of plant functional groups removal on soil fungal community structure and diversity in an alpine meadow on the Qinghai-Tibet Plateau[J]. Plant Science Journal,2023,41(4):425−436. DOI: 10.11913/PSJ.2095-0837.22246 |
To investigate the effect of plant diversity on soil fungal communities, we conducted a three-year experiment in an alpine meadows on the Qinghai-Tibet Plateau. The experiment included five treatments: no removal, legume and forb removal, graminoid and forb removal, graminoid and legume removal, and all removal. We analyzed soil fungal abundance and diversity using high-throughput sequencing, and measured root and soil properties. Results showed that Ascomycota, Mortierellomycota, and Basidiomycota were the dominant fungal phyla in the different treatments, accounting for more than 90%. There were no significant differences in composition and alpha diversity indices of the fungal communities under different treatments. The relative abundance of Glomeromycota was increased under graminoid and forb removal and graminoid and legume removal. Compared to the other treatments, the removal of graminoids and forbs increased the relative abundance of Zoopagomycota. The dominant fungal functional group was soil saprotroph fungi in all treatments. The relative abundance of arbuscular mycorrhizal fungi was increased under legume and forb removal and graminoid and forb removal. Compared with the removal of all, the removal of graminoids and legumes increased the relative abundance of lichen parasites/saprotroph fungi. The Mantel test showed no clear correlation between soil fungal community composition and function and environmental factors. Soil fungal richness indices were negatively affected by the increase in root biomass, root carbon:nitrogen (C:N), and dissolved organic carbon. Overall, our results indicate that the removal of plant functional groups in alpine meadows on the Qinghai-Tibet Plateau has a significant effect on soil fungal community structure but not on fungal community diversity.
[1] |
Myers N,Mittermeier RA,Mittermeier CG,da Fonseca GAB,Kent J. Biodiversity hotspots for conservation priorities[J]. Nature,2000,403 (6772):853−858. doi: 10.1038/35002501
|
[2] |
徐满厚,刘敏,翟大彤,薛娴,彭飞,尤全刚. 青藏高原高寒草甸生物量动态变化及与环境因子的关系——基于模拟增温实验[J]. 生态学报,2016,36(18):5759−5767.
Xu MH,Liu M,Zhai DT,Xue X,Peng F,You QG. Dynamic changes in biomass and its relationship with environmental factors in analpine meadow on the Qinghai-Tibetan Plateau,based on simulated warming experiments[J]. Acta Ecologica Sinica,2016,36 (18):5759−5767.
|
[3] |
姜林,胡骥,杨振安,詹伟,赵川,等. 植物功能群去除对高寒草甸群落结构、多样性及生产力的影响[J]. 生态学报,2021,41(4):1402−1411.
Jiang L,Hu J,Yang ZA,Zhan W,Zhao C,et al. Effects of plant functional group removal on community structure,diversity and production in Alpine meadow[J]. Acta Ecologica Sinica,2021,41 (4):1402−1411.
|
[4] |
张中华,周华坤,赵新全,姚步青,马真,等. 青藏高原高寒草地生物多样性与生态系统功能的关系[J]. 生物多样性,2018,26(2):111−129. doi: 10.17520/biods.2017021
Zhang ZH,Zhou HK,Zhao XQ,Yao BQ,Ma Z,et al. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau[J]. Biodiversity Science,2018,26 (2):111−129. doi: 10.17520/biods.2017021
|
[5] |
郝爱华,薛娴,彭飞,尤全刚,廖杰,等. 青藏高原典型草地植被退化与土壤退化研究[J]. 生态学报,2020,40(3):964−975.
Hao AH,Xue X,Peng F,You QG,Liao J,et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica,2020,40 (3):964−975.
|
[6] |
刘育红,魏卫东,杨元武,张英. 三江源区退化高寒草甸植物功能群特征[J]. 江苏农业科学,2019,47(1):286−291.
Liu YH,Wei WD,Yang YW,Zhang Y. Characteristics of plant functional groups of degraded alpine meadow in the Source Region of Three Rivers,China[J]. Jiangsu Agricultural Sciences,2019,47 (1):286−291.
|
[7] |
姜炎彬,张扬建. 西藏天然草地植物功能群分布的初步研究[J]. 植物科学学报,2016,34(2):220−229.
Jiang YB,Zhang YJ. Distribution of plant functional groups in the natural grasslands of Xizang,China[J]. Plant Science Journal,2016,34 (2):220−229.
|
[8] |
Wu GL,Du GZ,Liu ZH,Thirgood S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau[J]. Plant Soil,2009,319 (1-2):115−126. doi: 10.1007/s11104-008-9854-3
|
[9] |
Klein JA,Harte J,Zhao XQ. Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau[J]. Ecosystems,2008,11 (5):775−789. doi: 10.1007/s10021-008-9160-1
|
[10] |
于海玲,樊江文,钟华平,李愈哲. 青藏高原区域不同功能群植物氮磷生态化学计量学特征[J]. 生态学报,2017,37(11):3755−3764.
Yu HL,Fan JW,Zhong HP,Li YZ. Characteristics of N and P stoichiometry of plants in different functional groups in the Qinghai-Tibet Plateau regions[J]. Acta Ecologica Sinica,2017,37 (11):3755−3764.
|
[11] |
Wang J,Wang XT,Liu GB,Wang GL,Zhang C. Grazing-to-fencing conversion affects soil microbial composition,functional profiles by altering plant functional groups in a Tibetan alpine meadow[J]. Appl Soil Ecol,2021,166:104008. doi: 10.1016/j.apsoil.2021.104008
|
[12] |
薛凯,张彪,周姝彤,冉沁蔚,唐立,等. 青藏高原高寒草地土壤微生物群落及影响因子[J]. 科学通报,2019,64(27):2915−2927. doi: 10.1360/TB-2019-0090
Xue K,Zhang B,Zhou ST,Ran QW,Tang L,et al. Soil microbial communities in alpine grasslands on the Tibet Plateau and their influencing factors[J]. Chinese Science Bulletin,2019,64 (27):2915−2927. doi: 10.1360/TB-2019-0090
|
[13] |
肖颖,吉使阿微,赵文学,田莉华. 青藏高原东缘不同人工草地土壤养分、酶活性及微生物生物量特征[J]. 中国草地学报,2022,44(9):90−99.
Xiao Y,Jishi AW,Zhao WX,Tian LH. Soil nutrients,enzyme activities and microbial biomass characteristics of different artificial grasslands in the eastern margin of the Qinghai-Tibetan Plateau[J]. Chinese Journal of Grassland,2022,44 (9):90−99.
|
[14] |
姜鑫. 植物物种多样性对土壤微生物群落的影响: 以高寒草地为例[D]. 南京: 南京大学, 2021: 27-45.
|
[15] |
赵文,尹亚丽,李世雄,王玉琴,王彦龙. 三江源区退化高寒草甸土壤真菌群落特征[J]. 应用生态学报,2021,32(3):869−877.
Zhao W,Yin YL,Li SX,Wang YQ,Wang YL. The characteristics of soil fungal community in degraded alpine meadow in the Three Rivers Source Region,China[J]. Chinese Journal of Applied Ecology,2021,32 (3):869−877.
|
[16] |
Orwin KH,Wardle DA. Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance[J]. Plant Soil,2005,278 (1-2):205−221. doi: 10.1007/s11104-005-8424-1
|
[17] |
Connell RK,Zeglin LH,Blair JM. Plant legacies and soil microbial community dynamics control soil respiration[J]. Soil Biol Biochem,2021,160:108350. doi: 10.1016/j.soilbio.2021.108350
|
[18] |
Gui WY,Ren HY,Liu N,Zhang YJ,Cobb AB,et al. Plant functional group influences arbuscular mycorrhizal fungal abundance and hyphal contribution to soil CO2 efflux in temperate grasslands[J]. Plant Soil,2018,432 (1-2):157−170. doi: 10.1007/s11104-018-3789-0
|
[19] |
Chen DM,Pan QM,Bai YF,Hu SJ,Huang JH,et al. Effects of plant functional group loss on soil biota and net ecosystem exchange:a plant removal experiment in the Mongolian grassland[J]. J Ecol,2016,104 (3):734−743. doi: 10.1111/1365-2745.12541
|
[20] |
Jongen R,Hannula SE,de Long JR,Heinen R,Huberty M,et al. Plant community legacy effects on nutrient cycling,fungal decomposer communities and decomposition in a temperate grassland[J]. Soil Biol Biochem,2021,163:108450. doi: 10.1016/j.soilbio.2021.108450
|
[21] |
Francioli D,van Rijssel SQ,van Ruijven J,Termorshuizen AJ,Cotton TEA,et al. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment[J]. Plant Soil,2021,461 (1-2):91−105. doi: 10.1007/s11104-020-04454-y
|
[22] |
Chen WJ,Zhou HK,Wu Y,Wang J,Zhao ZW,et al. Loss of plant functional groups impacts soil carbon flow by changing multitrophic interactions within soil micro-food webs[J]. Appl Soil Ecol,2022,178:104566. doi: 10.1016/j.apsoil.2022.104566
|
[23] |
Strecker T,Macé OG,Scheu S,Eisenhauer N. Functional composition of plant communities determines the spatial and temporal stability of soil microbial properties in a long-term plant diversity experiment[J]. Oikos,2016,125 (12):1743−1754. doi: 10.1111/oik.03181
|
[24] |
宛倩. 高寒草甸不同恢复方式对土壤微生物群落的影响[D]. 杨凌: 西北农林科技大学, 2022: 60-64.
|
[25] |
温杨雪,赵博,罗巧玉,贾云龙,冯涛,王强. 青藏高原高寒草地AM真菌分布及其对近自然恢复的生态作用[J]. 菌物学报,2021,40(10):2562−2578.
Wen YX,Zhao B,Luo QY,Jia YL,Feng T,Wang Q. Distribution and ecological role in close-to-nature restoration of arbuscular mycorrhizal fungi in Tibetan Plateau alpine grassland[J]. Mycosystema,2021,40 (10):2562−2578.
|
[26] |
王浩,吴爱姣,刘保兴,刘润进,陈应龙. 菌根真菌多样性与植物多样性的相互作用研究进展[J]. 微生物学通报,2020,47(11):3918−3932.
Wang H,Wu AJ,Liu BX,Liu RJ,Chen YL. Interactions between mycorrhizal fungal diversity and plant diversity:a review[J]. Microbiology China,2020,47 (11):3918−3932.
|
[27] |
Wang P,Guo J,Xu XY,Yan XB,Zhang KC,et al. Soil acidification alters root morphology,increases root biomass but reduces root decomposition in an alpine grassland[J]. Environ Pollut,2020,265:115016. doi: 10.1016/j.envpol.2020.115016
|
[28] |
Luo YJ,Qin GL,Du GZ. Importance of assemblage-level thinning:a field experiment in an alpine meadow on the Tibet plateau[J]. J Veg Sci,2006,17 (4):417−424.
|
[29] |
刘旻霞,朱柯嘉. 青藏高原东缘高寒草甸不同功能群植物氮磷化学计量特征研究[J]. 中国草地学报,2013,35(2):52−58. doi: 10.3969/j.issn.1673-5021.2013.02.010
Liu MX,Zhu KJ. Characteristics of nitrogen and phosphorus stoichiometry of plants in different functional groups on alpine meadow in the eastern edge of Tibetan plateau[J]. Chinese Journal of Grassland,2013,35 (2):52−58. doi: 10.3969/j.issn.1673-5021.2013.02.010
|
[30] |
张国龙. 大针茅群落物种丰富度和功能多样性对混合凋落物分解特征的影响[D]. 呼和浩特: 内蒙古大学, 2019: 21-23.
|
[31] |
马百兵,孙建,朱军涛,罗广祥. 藏北高寒草地植物群落C、N化学计量特征及其影响因素[J]. 生态学杂志,2018,37(4):1026−1036.
Ma BB,Sun J,Zhu JT,Luo GX. Carbon and nitrogen stoichiometry of plant community and its influencing factors in a northern Tibet alpine grassland[J]. Chinese Journal of Ecology,2018,37 (4):1026−1036.
|
[32] |
Li WJ,Zhang RL,Liu SS,Li WX,Li JH,et al. Effect of loss of plant functional group and simulated nitrogen deposition on subalpine ecosystem properties on the Tibetan Plateau[J]. Sci Total Environ,2018 (631-632):289−297. doi: 10.1016/j.scitotenv.2018.02.287
|
[33] |
Marshall CB,Mclaren JR,Turkington R. Soil microbial communities resistant to changes in plant functional group composition[J]. Soil Biol Biochem,2011,43 (1):78−85. doi: 10.1016/j.soilbio.2010.09.016
|
[34] |
Van der Wal A,van Veen JA,Smant W,Boschker HTS,Bloem J,et al. Fungal biomass development in a chronosequence of land abandonment[J]. Soil Biol Biochem,2006,38 (1):51−60. doi: 10.1016/j.soilbio.2005.04.017
|
[35] |
于贵瑞,伏玉玲,孙晓敏,温学发,张雷明. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J]. 中国科学D辑:地球科学,2006,36(S1):1−21.
|
[36] |
赵兴鸽,张世挺,牛克昌. 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系[J]. 应用与环境生物学报,2020,26(1):1−9.
Zhao XG,Zhang ST,Niu KC. Relationships between soil fungal diversity,plant community functional traits,and soil attributes in Tibetan alpine meadows[J]. Chinese Journal of Applied and Environmental Biology,2020,26 (1):1−9.
|
[37] |
李海云,姚拓,高亚敏,张建贵,马亚春,等. 退化高寒草地土壤真菌群落与土壤环境因子间相互关系[J]. 微生物学报,2019,59(4):678−688.
Li HY,Yao T,Gao YM,Zhang JG,Ma YC,et al. Relationship between soil fungal community and soil environmental factors in degraded alpine grassland[J]. Acta Microbiologica Sinica,2019,59 (4):678−688.
|
[38] |
Liu YJ,Shi GX,Mao L,Cheng G,Jiang SJ,et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[J]. New Phytol,2012,194 (2):523−535. doi: 10.1111/j.1469-8137.2012.04050.x
|
[39] |
王幼珊,刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报,2017,36(7):820−850.
Wang YS,Liu RJ. A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota[J]. Mycosystema,2017,36 (7):820−850.
|
[40] |
Corsaro D,Köhsler M,Wylezich C,Venditti D,Walochnik J,Michel R. New insights from molecular phylogenetics of amoebophagous fungi (Zoopagomycota,Zoopagales)[J]. Parasitol Res,2018,117 (1):157−167. doi: 10.1007/s00436-017-5685-6
|
[41] |
Yang T,Adams JM,Shi Y,He JS,Jing X,et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau:associations with plant diversity and productivity[J]. New Phytol,2017,215 (2):756−765. doi: 10.1111/nph.14606
|
[42] |
刘安榕,杨腾,徐炜,上官子健,王金洲,等. 青藏高原高寒草地地下生物多样性:进展、问题与展望[J]. 生物多样性,2018,26(9):972−987. doi: 10.17520/biods.2018119
Liu AR,Yang T,Xu W,Shangguan ZJ,Wang JZ,et al. Status,issues and prospects of belowground biodiversity on the Tibetan alpine grassland[J]. Biodiversity Science,2018,26 (9):972−987. doi: 10.17520/biods.2018119
|
[43] |
江奥,敬路淮,泽让东科,田黎明. 放牧影响草地凋落物分解研究进展[J]. 草业学报,2023,32(4):208−220.
Jiang A,Jing LH,Mipam TD,Tian LM. Progress in research on the effects of grazing on grassland litter decomposition[J]. Acta Prataculturae Sinica,2023,32 (4):208−220.
|
[44] |
王敏. 亚热带森林景观中可溶性有机碳的特征及土壤截存机制[D]. 北京: 中国科学院大学, 2019: 70-72.
|
[45] |
Leff JW,Bardgett RD,Wilkinson A,Jackson BG,Pritchard WJ,et al. Predicting the structure of soil communities from plant community taxonomy,phylogeny,and traits[J]. ISME J,2018,12 (7):1794−1805. doi: 10.1038/s41396-018-0089-x
|
[46] |
Kang BT,Bowatte S,Hou FJ. Soil microbial communities and their relationships to soil properties at different depths in an alpine meadow and desert grassland in the Qilian mountain range of China[J]. J Arid Environ,2021,184:104316. doi: 10.1016/j.jaridenv.2020.104316
|
1. |
董晓慧,师尚礼,尹国丽,陈三冬,巩海强,刘林波. 玉米器官组织内生细菌和真菌群落多样性. 草业学报. 2025(05): 130-145 .
![]() |