Advance Search
Lü T,Yue WY,Cai MM,Chang J,He DL. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal,2024,42(2):201−210. DOI: 10.11913/PSJ.2095-0837.23153
Citation: Lü T,Yue WY,Cai MM,Chang J,He DL. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal,2024,42(2):201−210. DOI: 10.11913/PSJ.2095-0837.23153

Comparative proteomics analysis of developing buds in Brassica napus L.

More Information
  • Received Date: May 24, 2023
  • Accepted Date: June 28, 2023
  • Available Online: July 09, 2023
  • Brassica napus L., the predominant variant of rapeseed cultivated in China, undergoes a series of complex metabolic and regulatory processes during flower bud development, especially the early developmental stages preceding microspore maturation, which significantly impacts fertility. Based on phenotypic and histological observations, flower bud sizes ranging from 1 mm to 3 mm in B. napus were found to correspond to the 5th–9th stages of angiosperm stamen development. Using high-throughput high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) sequencing technology, proteomics analysis was conducted on these flower buds. In total, 13 444 proteins were identified, including 613 differentially expressed proteins (DEPs). Functional analysis of the DEPs revealed a significant up-regulation in cell wall building, lipid metabolism, and cell transport-related proteins, crucial for cell development and pollen formation during the early stage of flower bud development. The expression of nucleic acid-related proteins markedly changed, consistent with rapid cell division and growth during this period. However, no significant changes were found in the expression of proteins related to the ABCDE development model, suggesting these proteins may have other functions beyond inducing flower bud differentiation. This study systematically studied the differences in tissue morphology and protein expression during the early stages of bud development in B. napus, paving the way for further research on the metabolism and regulation of flower bud development.

  • [1]
    殷艳,尹亮,张学昆,郭静利,王积军. 我国油菜产业高质量发展现状和对策[J]. 中国农业科技导报,2021,23(8):1−7.

    Yin Y,Yin L,Zhang XK,Guo JL,Wang JJ. Status and countermeasure of the high-quality development of rapeseed industry in China[J]. Journal of Agricultural Science and Technology,2021,23(8):1−7.
    [2]
    Sanders PM,Bui AQ,Weterings K,McIntire KN,Hsu YC,et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J]. Sex. Plant Reprod,1999,11:297−322. doi: 10.1007/s004970050158
    [3]
    姚楠. 植物脂质生物学进展[J]. 植物生理学报,2018,54(12):1747.

    Yao N. Advances in plant lipid biology[J]. Plant Physiology Journal,2018,54(12):1747.
    [4]
    Weigel D,Meyerowitz EM. The ABCs of floral homeotic genes[J]. Cell,1994,78(2):203−209. doi: 10.1016/0092-8674(94)90291-7
    [5]
    Theissen G,Becker A,Di Rosa A,Kanno A,Kim JT,et al. A short history of MADS-box genes in plants[J]. Plant Mol Biol,2000,42(1):115−149. doi: 10.1023/A:1006332105728
    [6]
    Hill TA,Day CD,Zondlo SC,Thackeray AG,Irish VF. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3[J]. Development,1998,125(9):1711−1721. doi: 10.1242/dev.125.9.1711
    [7]
    Ng M,Yanofsky MF. Activation of the Arabidopsis B class homeotic genes by APETALA1[J]. Plant Cell,2001,13(4):739−753.
    [8]
    Savidge B,Rounsley SD,Yanofsky MF. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes[J]. Plant Cell,1995,7(6):721−733.
    [9]
    Liu C,Xi WY,Shen LS,Tan CP,Yu H. Regulation of floral patterning by flowering time genes[J]. Dev Cell,2009,16(5):711−722. doi: 10.1016/j.devcel.2009.03.011
    [10]
    Theißen G. Genetics of identity[J]. Nature,2001,414(6863):491. doi: 10.1038/35107163
    [11]
    Theißen G,Saedler H. Plant biology. Floral quartets[J]. Nature,2001,409(6819):469−471. doi: 10.1038/35054172
    [12]
    Becker A,Theißen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Mol Phylogenet Evol,2003,29(3):464−489. doi: 10.1016/S1055-7903(03)00207-0
    [13]
    Jack T. Molecular and genetic mechanisms of floral control[J]. Plant Cell,2004,16:S1−S17. doi: 10.1105/tpc.017038
    [14]
    Pelaz S,Gustafson-Brown C,Kohalmi SE,Crosby WL,Yanofsky MF. APETALA1 and SEPALLATA3 interact to promote flower development[J]. Plant J,2001,26(4):385−394. doi: 10.1046/j.1365-313X.2001.2641042.x
    [15]
    Fan HY,Hu Y,Tudor M,Ma H. Specific interactions between the K domains of AG and AGLs,members of the MADS domain family of DNA binding proteins[J]. Plant J,1997,12(5):999−1010. doi: 10.1046/j.1365-313X.1997.12050999.x
    [16]
    Zhu W,Xu XB,Tian JK,Zhang L,Komatsu S. Proteomic analysis of Lonicera japonica Thunb. immature flower buds using combinatorial peptide ligand libraries and polyethylene glycol fractionation[J]. J Proteome Res,2016,15(1):166−181. doi: 10.1021/acs.jproteome.5b00910
    [17]
    Lu DH,Ni WM,Stanley BA,Ma H. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1[J]. BMC Plant Biol,2016,16:61. doi: 10.1186/s12870-015-0571-9
    [18]
    Heng SP,Chen FY,Wei C,et al. Cytological and iTRAQ-based quantitative proteomic analyses of hau CMS in Brassica napus L.[J]. J Proteomics,2019,193:230−238. doi: 10.1016/j.jprot.2018.10.014
    [19]
    崔以璨. 长距彗星兰花蜜距石蜡切片的制备和显微结构的观察[J]. 安徽冶金科技职业学院学报,2022,32(4):45−47. doi: 10.3969/j.issn.1672-9994.2022.04.017

    Cui YC. Preparation of paraffin section and observation of microstructure of nectar spur in Darwin orchid[J]. Journal of Anhui Vocational College of Metallurgy and Technology,2022,32(4):45−47. doi: 10.3969/j.issn.1672-9994.2022.04.017
    [20]
    Oogawara R,Satoh S,Yoshioka T,Ishizawa K. Expression of α-expansin and xyloglucan endotransglucosylase/hydrolase genes associated with shoot elongation enhanced by anoxia,ethylene and carbon dioxide in arrowhead (Sagittaria pygmaea Miq.) tubers[J]. Ann Bot,2005,96(4):693−702. doi: 10.1093/aob/mci221
    [21]
    Yokoyama R,Nishitani K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis[J]. Plant Cell Physiol,2001,42(10):1025−1033. doi: 10.1093/pcp/pce154
    [22]
    Philippe F,Pelloux J,Rayon C. Plant pectin acetylesterase structure and function:new insights from bioinformatic analysis[J]. BMC Genomics,2017,18(1):456. doi: 10.1186/s12864-017-3833-0
    [23]
    魏铭,王鑫伟,陈博,宋程威,杜亮,等. 植物紫色酸性磷酸酶基因家族功能研究进展[J]. 植物学报,2019,54(1):93−101. doi: 10.11983/CBB18044

    Wei M,Wang XW,Chen B,Song CW,Du L,et al. Research progress into the function of purple acid phosphatase gene family in plants[J]. Chinese Bulletin of Botany,2019,54(1):93−101. doi: 10.11983/CBB18044
    [24]
    Del Vecchio HA,Ying S,Park J,Knowles VL,Kanno S,et al. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation[J]. Plant J,2014,80(4):569−581. doi: 10.1111/tpj.12663
    [25]
    Herger A,Dünser K,Kleine-Vehn J,Ringli C. Leucine-rich repeat extensin proteins and their role in cell wall sensing[J]. Curr Biol,2019,29(17):R851−R858. doi: 10.1016/j.cub.2019.07.039
    [26]
    Wan XY,Wu SW,Li ZW,An XL,Tian YH. Lipid metabolism:critical roles in male fertility and other aspects of reproductive development in plants[J]. Mol Plant,2020,13(7):955−983. doi: 10.1016/j.molp.2020.05.009
    [27]
    Zhao J,Wang SS,Qin JJ,Sun CQ,Liu FX. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice[J]. Plant Biotechnol J,2020,18(3):756−769. doi: 10.1111/pbi.13243
    [28]
    Freytes SN, Canelo M, Cerdán PD. Regulation of flowering time: when and where?[J] Curr Opin Plant Biol, 2021, 63: 102049.
    [29]
    Wu J,Wu QH,Bo ZJ,Zhu XL,Zhang JH,et al. Comprehensive effects of Flowering locus T-mediated stem growth in tobacco[J]. Front Plant Sci,2022,13:922919. doi: 10.3389/fpls.2022.922919
    [30]
    Updegraff EP,Zhao F,Preuss D. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen[J]. Sex Plant Reprod,2009,22(3):197−204. doi: 10.1007/s00497-009-0104-5
    [31]
    申慧敏,史俐莎,田清尹,刘家伟,王良桂,岳远征. ABC转运蛋白在植物花器官生长发育中的研究进展[J]. 西北植物学报,2021,41(11):1975−1982. doi: 10.7606/j.issn.1000-4025.2021.11.1975

    Shen HM,Shi LS,Tian QY,Liu JW,Wang LG,Yue YZ. Recent progress of ABC transporters in floral organ development of plants[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(11):1975−1982. doi: 10.7606/j.issn.1000-4025.2021.11.1975
    [32]
    Cai Q,Qiao LL,Wang M,He BY,Lin FM,et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes[J]. Science,2018,360(6393):1126−1129. doi: 10.1126/science.aar4142
  • Related Articles

    [1]Kang Hongwei, Yue Kangjie, Liu Huixin, Wang Jiali, Tian Xuping. Effect of sex and leaf shape on gas exchange parameters and chlorophyll fluorescence characteristics in Sabina chinensis (L.) Ant[J]. Plant Science Journal, 2024, 42(6): 791-799. DOI: 10.11913/PSJ.2095-0837.23391
    [2]Ma Rui, Liu Chen-Yu, Han Lu, Wang Hai-Zhen. Trade-off relationship between leaf number and leaf size on current-year twigs of Populus euphratica Oliv. in response to groundwater gradients in extreme arid area of northwestern China[J]. Plant Science Journal, 2022, 40(2): 240-249. DOI: 10.11913/PSJ.2095-0837.2022.20240
    [3]Chen Zhao, Guan Xin-Yi, Cao Kun-Fang. Coordination between leaf and stem hydraulic characteristics in Machilus species[J]. Plant Science Journal, 2018, 36(5): 729-735. DOI: 10.11913/PSJ.2095-0837.2018.50729
    [4]Dai Yong-Xin, Wang Lin, Wang Yan-Shu, Wan Xian-Chong. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings[J]. Plant Science Journal, 2017, 35(5): 750-758. DOI: 10.11913/PSJ.2095-0837.2017.50750
    [5]Song Li-Ya, Li Yong-Quan, Zhang Wei, Shao Jian-Wen. Highly differentiated phylogeographic structure of Primula ranunculoides[J]. Plant Science Journal, 2017, 35(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2017.40503
    [6]HU Yun-Hong, PENG Bin, QI Xiao-Qing, LIU Xue-Qun, YU Guang-Hui. Comparative Assay of Superoxide Dismutase and Total Flavone Antioxidant Activities in Leaf-Callus and Leaves of Ginkgo biloba L.[J]. Plant Science Journal, 2010, 28(4): 521-526.
    [7]CHEN Guo-Qing, HUANG Hong-Wen, GE Xue-Jun. Allozyme Diversity and Population Differentiation in an Endangered Plant,Ammopiptanthus nanus(Leguminosae)[J]. Plant Science Journal, 2005, 23(2): 131-137.
    [8]Shao Hongho. SOME ADVANCES IN THE SEXUAL DIFFERENTIATION RESEARCH OF HIGHER PLANTS[J]. Plant Science Journal, 1994, 12(1): 85-94.
    [9]Gui Yaolin, Gu Shurong, Xu Tingyu. CYTOLOGICAL OBSERVATION ON DEDIFFERENTIATION INITIATION OF LEAF EXPLANTS IN BEGONIA COCClNEA[J]. Plant Science Journal, 1986, 4(1): 12-16.
    [10]Li Rongqian, Kuang Anxiu, Zeng Zishen, Liu Lihua. CYTOLOGICAL STUDIES ON CALLUS WITHOOT ORGAN DIFFERENTIATION INDUCED FROM YOUNG LEAVES IN ACTINIDIA MELANAN-DRA VAR. KWANGSIENSIS AND HELIANT-HUS AUNUS VAR. LIAONING[J]. Plant Science Journal, 1983, 1(2): 151-154.
  • Cited by

    Periodical cited type(1)

    1. 刘斌. 2023年度叶尔羌河流域生态输水效益评估. 云南水力发电. 2025(02): 5-8 .

    Other cited types(0)

Catalog

    Article views (362) PDF downloads (159) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return