Citation: | Liu J,Sun H,Deng XB,Yang D,Song HY,Zhang MH,Wang YX,Xin J,Yang H,Yang M. Research progress in lotus (Nelumbo) genetics and molecular biology[J]. Plant Science Journal,2023,41(6):809−819. DOI: 10.11913/PSJ.2095-0837.23154 |
Lotus (Nelumbo), a significant aquatic crop in China, possesses considerable ornamental, edible, and medicinal value. Over the past decade, significant progress has been achieved in the domains of genomics, genetics, and molecular biology pertaining to lotus. The reference genomes of two Nelumbo species have been constructed, along with high-density genetic linkage maps. Furthermore, various studies have explored the molecular mechanisms of ornamental traits (flower color, flowering time, and flower type), food quality (seed and rhizome nutrients), medicinal components (alkaloids and flavonoids), and stress responses (flooding, low temperature, low light, heavy metals, and salinity) of lotus. In this paper, the genome sequencing, genetic mapping, gene mining, and functional analysis of important traits in lotus are systematically reviewed. Potential goals and future directions are also discussed to provide a reference for research and genetic improvement of lotus.
[1] |
Li HT,Luo Y,Gan L,Ma PF,Gao LM,et al. Plastid phylogenomic insights into relationships of all flowering plant families[J]. BMC Biol,2021,19:232. doi: 10.1186/s12915-021-01166-2
|
[2] |
张行言. 中国荷花新品种图志[M]. 陈龙清, 译. 北京: 中国林业出版社, 2011: 1-100.
|
[3] |
中国科学院武汉植物研究所. 中国莲[M]. 北京: 科学出版社, 1987: 1-100.
|
[4] |
Diao Y,Chen L,Yang GX,Zhou MQ,Song YC,et al. Nuclear DNA C-values in 12 species in Nymphaeales[J]. Caryologia,2006,59 (1):25−30. doi: 10.1080/00087114.2006.10797894
|
[5] |
Ming R,VanBuren R,Liu YL,Yang M,Han YP,et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn. )[J]. Genome Biol,2013,14 (5):R41. doi: 10.1186/gb-2013-14-5-r41
|
[6] |
Meng Z,Hu XX,Zhang ZL,Li ZJ,Lin QF,et al. Chromosome nomenclature and cytological characterization of sacred lotus[J]. Cytogenet Genome Res,2017,153 (4):223−231. doi: 10.1159/000486777
|
[7] |
Wang Y,Fan GY,Liu YM,Sun FM,Shi CC,et al. The sacred lotus genome provides insights into the evolution of flowering plants[J]. Plant J,2013,76 (4):557−567. doi: 10.1111/tpj.12313
|
[8] |
Shi T,Rahmani RS,Gugger PF,Wang MH,Li H,et al. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants[J]. Mol Biol Evol,2020,37 (8):2394−2413. doi: 10.1093/molbev/msaa105
|
[9] |
Gui ST,Peng J,Wang XL,Wu ZH,Cao R,et al. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements[J]. Plant J,2018,94 (4):721−734. doi: 10.1111/tpj.13894
|
[10] |
Zheng XW,Wang T,Cheng T,Zhao LL,Zheng XF,et al. Genomic variation reveals demographic history and biological adaptation of the ancient relictual,lotus(Nelumbo Adans. )[J]. Hortic Res,2022,9:29.
|
[11] |
Zheng P,Sun H,Liu J,Lin JS,Zhang XT,et al. Comparative analyses of American and Asian lotus genomes reveal insights into petal color,carpel thermogenesis and domestication[J]. Plant J,2022,110 (5):1498−1515. doi: 10.1111/tpj.15753
|
[12] |
Yang M,Han YN,Vanburen R,Ming R,Xu LM,et al. Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar[J]. BMC Genomics,2012,13:653. doi: 10.1186/1471-2164-13-653
|
[13] |
Zhang Q,Li LT,Vanburen RL,Liu YL,Yang M,et al. Optimization of linkage mapping strategy and construction of a high-density American lotus linkage map[J]. BMC Genomics,2014,15:372. doi: 10.1186/1471-2164-15-372
|
[14] |
陈岳,张微微,莫海波,付乃峰,田代科. EST-SSR标记构建莲(Nelumbo Adans. )遗传连锁图谱[J]. 分子植物育种,2017,15(6):2265−2273.
Chen Y,Zhang WW,Mo HB,Fu NF,Tian DK. Construction of genetic linkage map of lotus (Nelumbo Adans. ) using EST-SSR markers[J]. Molecular Plant Breeding,2017,15 (6):2265−2273.
|
[15] |
Liu ZW,Zhu HL,Liu YP,Kuang J,Zhou K,et al. Construction of a high-density,high-quality genetic map of cultivated lotus (Nelumbo nucifera) using next-generation sequencing[J]. BMC Genomics,2016,17:466. doi: 10.1186/s12864-016-2781-4
|
[16] |
严寒松. 中国莲高密度遗传图谱的构建及花瓣数控制基因的定位[D]. 福州: 福建农林大学, 2019: 1-10.
|
[17] |
Huang LY,Li M,Cao DD,Yang PF. Genetic dissection of rhizome yield-related traits in Nelumbo nucifera through genetic linkage map construction and QTL mapping[J]. Plant Physiol Biochem,2021,160:155−165. doi: 10.1016/j.plaphy.2021.01.020
|
[18] |
Liu YL,Song HY,Zhang MH,Yang D,Deng XB,et al. Identification of QTLs and a putative candidate gene involved in rhizome enlargement of Asian lotus (Nelumbo nucifera)[J]. Plant Mol Biol,2022,110 (1-2):23−36. doi: 10.1007/s11103-022-01281-w
|
[19] |
Wang YJ,Chen YQ,Yuan M,Xue ZY,Jin QJ,Xu YC. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes in sacred lotus[J]. J Am Soc Hortic Sci,2016,141 (6):573−582. doi: 10.21273/JASHS03848-16
|
[20] |
Zhu HH,Yang JX,Xiao CH,Mao TY,Zhang J,Zhang HY. Differences in flavonoid pathway metabolites and transcripts affect yellow petal colouration in the aquatic plant Nelumbo nucifera[J]. BMC Plant Biol,2019,19 (1):277. doi: 10.1186/s12870-019-1886-8
|
[21] |
Deng J,Li M,Huang LY,Yang M,Yang PF. Genome-Wide analysis of the R2R3 MYB subfamily genes in lotus (Nelumbo nucifera)[J]. Plant Mol Biol Rep,2016,34 (5):1016−1026. doi: 10.1007/s11105-016-0981-3
|
[22] |
Sun SS,Gugger PF,Wang QF,Chen JM. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans. )[J]. PeerJ,2016,4:e2369. doi: 10.7717/peerj.2369
|
[23] |
Deng J,Li JJ,Su MY,Lin ZY,Chen L,Yang PF. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J]. Plant Physiol Biochem,2021,158:518−523. doi: 10.1016/j.plaphy.2020.11.038
|
[24] |
李静,刘正位,朱红莲,匡晶,彭静,等. 莲花色性状QTL定位及分子标记开发[J]. 植物科学学报,2022,40(6):820−828. doi: 10.11913/PSJ.2095-0837.2022.60820
Li J,Liu ZW,Zhu HL,Kuang J,Peng J,et al. Mapping of quantitative trait loci and development of closely linked markers of flower color in lotus (Nelumbo nucifera Gaertner)[J]. Plant Science Journal,2022,40 (6):820−828. doi: 10.11913/PSJ.2095-0837.2022.60820
|
[25] |
Liu J, Wang YX, Deng XB, Zhang MH, Sun H, et al. Transcription factor NnMYB5 controls petal color by regulating GLUTATHIONE S-TRANSFERASE2 in Nelumbo nucifera[J]. Plant Physiol, 2023: kiad363. doi: 10.1093/plphys/kiad363.
|
[26] |
杨小凤,李小蒙,廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性,2021,29(6):825−842. doi: 10.17520/biods.2020370
Yang XF,Li XM,Liao WJ. Advances in the genetic regulating pathways of plant flowering time[J]. Biodiversity Science,2021,29 (6):825−842. doi: 10.17520/biods.2020370
|
[27] |
郭蓓. 荷花成花相关基因NnAP1的克隆与表达[D]. 郑州: 河南农业大学, 2014: 1-10.
|
[28] |
Yang M,Zhu L,Xu L,Pan C,Liu Y. Comparative transcriptomic analysis of the regulation of flowering in temperate and tropical lotus (Nelumbo nucifera) by RNA-Seq[J]. Ann Appl Biol,2014,165 (1):73−95. doi: 10.1111/aab.12119
|
[29] |
胡裕凤. 莲花期与地下茎膨大相关基因的功能分析[D]. 北京: 中国科学院大学, 2019: 1-10.
|
[30] |
宋贺云. 莲FT基因调控开花的功能研究[D]. 北京: 中国科学院大学, 2020: 1-10.
|
[31] |
Zhang L,Zhang F,Liu FB,Shen J,Wang JX,et al. The lotus NnFTIP1 and NnFT1 regulate flowering time in Arabidopsis[J]. Plant Sci,2021,302:110677. doi: 10.1016/j.plantsci.2020.110677
|
[32] |
Yang M,Zhu LP,Xu LM,Liu YL. Population structure and association mapping of flower-related traits in lotus (Nelumbo Adans. ) accessions[J]. Sci Horticult,2014,175:214−222. doi: 10.1016/j.scienta.2014.06.017
|
[33] |
李玲. 莲高密度遗传连锁图谱的构建及花期QTL定位[D]. 北京: 中国科学院大学, 2017: 1-10.
|
[34] |
黄秀,田代科,张微微,曾宋君,莫海波. 荷花“重瓣化”的花器官形态发育比较观察[J]. 植物分类与资源学报,2014,36(3):303−309.
Huang X,Tian DK,Zhang WW,Zeng SJ,Mo HB. Comparison of floral organ morphological development between single and double flowers in Nelumbo nucifera[J]. Plant Diversity and Resources,2014,36 (3):303−309.
|
[35] |
Lin ZY,Damaris RN,Shi T,Li JJ,Yang PF. Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo nucifera)[J]. BMC Genomics,2018,19 (1):554. doi: 10.1186/s12864-018-4950-0
|
[36] |
Lin ZY,Cao DD,Damaris RN,Yang PF. Comparative transcriptomic analysis provides insight into carpel petaloidy in lotus (Nelumbo nucifera)[J]. PeerJ,2021,9:e12322. doi: 10.7717/peerj.12322
|
[37] |
Sun H,Li JJ,Song HY,Yang D,Deng XB,et al. Comprehensive analysis of AGPase genes uncovers their potential roles in starch biosynthesis in lotus seed[J]. BMC Plant Biol,2020,20 (1):457. doi: 10.1186/s12870-020-02666-z
|
[38] |
Chen HH,Chu P,Zhou YL,Ding Y,Li Y,et al. Ectopic expression of NnPER1,a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant,enhances seed longevity and stress tolerance in Arabidopsis[J]. Plant J,2016,88 (4):608−619. doi: 10.1111/tpj.13286
|
[39] |
Zhang D,Liu T,Sheng JY,Lv S,Ren L. TMT-Based quantitative proteomic analysis reveals the physiological regulatory networks of embryo dehydration protection in lotus (Nelumbo nucifera)[J]. Front Plant Sci,2021,12:792057. doi: 10.3389/fpls.2021.792057
|
[40] |
Chen L,Xin J,Song HY,Xu F,Yang H,et al. Genome-wide study and functional characterization elucidates the potential association of late embryogenesis abundant (LEA) genes with lotus seed development[J]. Int J Biol Macromol,2023,226:1−13. doi: 10.1016/j.ijbiomac.2022.11.301
|
[41] |
Li JJ,Shi T,Huang LY,He DL,Nyong'A TM,Yang PF. Systematic transcriptomic analysis provides insights into lotus (Nelumbo nucifera) seed development[J]. Plant Growth Regul,2018,86 (3):339−350.
|
[42] |
Wang L,Fu JL,Li M,Fragner L,Weckwerth W,Yang PF. Metabolomic and proteomic profiles reveal the dynamics of primary metabolism during seed development of lotus (Nelumbo nucifera)[J]. Front Plant Sci,2016,7:750.
|
[43] |
Gu C,Wang L,Zhang LY,Liu YL,Yang M,et al. Characterization of genes encoding granule-bound starch synthase in sacred lotus reveals phylogenetic affinity of Nelumbo to Proteales[J]. Plant Mol Biol Rep,2013,31 (5):1157−1165. doi: 10.1007/s11105-013-0605-0
|
[44] |
Zhu FL,Sun H,Diao Y,Zheng XW,Xie KQ,Hu ZL. Genetic diversity,functional properties and expression analysis of NnSBE genes involved in starch synthesis of lotus (Nelumbo nucifera Gaertn. )[J]. PeerJ,2019,7:e7750. doi: 10.7717/peerj.7750
|
[45] |
刘正位,郭丹丹,彭静,朱红莲,匡晶,等. 莲子产量相关性状的QTL定位[J]. 园艺学报,2020,47(8):1565−1576. doi: 10.16420/j.issn.0513-353x.2019-0665
Liu ZW,Guo DD,Peng J,Zhu HL,Kuang J,et al. QTL mapping of six seed yield related traits in lotus[J]. Acta Horticulturae Sinica,2020,47 (8):1565−1576. doi: 10.16420/j.issn.0513-353x.2019-0665
|
[46] |
韩玉燕. 莲藕NnWOX1-1、NnWOX4-3和NnWOX5-1的克隆、表达及功能初步分析[D]. 扬州: 扬州大学, 2021: 1-10.
|
[47] |
Yang M,Zhu LP,Pan C,Xu LM,Liu YL,et al. Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera)[J]. Sci Rep,2015,5:13059. doi: 10.1038/srep13059
|
[48] |
Cao DD,Lin ZY,Huang LY,Damaris RN,Li M,Yang PF. A CONSTANS-LIKE gene of Nelumbo nucifera could promote potato tuberization[J]. Planta,2021,253 (3):65. doi: 10.1007/s00425-021-03581-9
|
[49] |
程立宝,李淑艳,李岩,尹静静,陈学好,李良俊. 莲藕根状茎膨大过程中淀粉合成相关基因的表达[J]. 中国农业科学,2012,45(16):3330−3336. doi: 10.3864/j.issn.0578-1752.2012.16.012
Cheng LB,Li SY,Li Y,Yin JJ,Chen XH,Li LJ. Expression of genes related to starch synthesis during rhizome swelling of lotus root (Nelumbo nucifera Gaertn. )[J]. Scientia Agricultura Sinica,2012,45 (16):3330−3336. doi: 10.3864/j.issn.0578-1752.2012.16.012
|
[50] |
沈王俊. 莲藕颗粒结合淀粉合成酶基因NnGBSS调控直链淀粉合成的初步探究[D]. 扬州: 扬州大学, 2021: 1-10.
|
[51] |
张莉,印荔,杨见秋,程立宝,李良俊. 莲藕可溶性淀粉合成酶基因LrSSS的克隆与表达特性分析[J]. 园艺学报,2015,34(3):496−504.
Zhang L,Yin L,Yang JQ,Cheng LB,Li LJ. Cloning and expression profiling analysis of soluble starch synthase gene in lotus rhizome[J]. Acta Horticulturae Sinica,2015,34 (3):496−504.
|
[52] |
李婷婷,李玉蕊,鄢敏丽,张海星,王瑞红,等. 莲藕PPO基因家族成员鉴定与分析[J]. 农业生物技术学报,2022,30(1):38−49. doi: 10.3969/j.issn.1674-7968.2022.01.004
Li TT,Li YR,Yan ML,Zhang HX,Wang RH,et al. Identification and analysis of PPO gene family members in lotus (Nelumbo nucifera)[J]. Journal of Agricultural Biotechnology,2022,30 (1):38−49. doi: 10.3969/j.issn.1674-7968.2022.01.004
|
[53] |
郝晓燕. 莲藕多酚氧化酶基因的克隆与表达分析[D]. 杨凌: 西北农林科技大学, 2011: 1-10.
|
[54] |
Sharma BR,Gautam LNS,Adhikari D,Karki R. A comprehensive review on chemical profiling of Nelumbo nucifera:potential for drug development[J]. Phytother Res,2017,31 (1):3−26. doi: 10.1002/ptr.5732
|
[55] |
Menéndez-Perdomo IM,Facchini PJ. Benzylisoquinoline alkaloids biosynthesis in sacred lotus[J]. Molecules,2018,23 (11):2899. doi: 10.3390/molecules23112899
|
[56] |
Chen S,Fang LC,Xi HF,Guan L,Fang JB,et al. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry[J]. Anal Chim Acta,2012,724:127−135. doi: 10.1016/j.aca.2012.02.051
|
[57] |
Deng XB,Zhu LP,Fang T,Vimolmangkang S,Yang D,et al. Analysis of isoquinoline alkaloid composition and wound-induced variation in Nelumbo using HPLC-MS/MS[J]. J Agric Food Chem,2016,64 (5):1130−1136. doi: 10.1021/acs.jafc.5b06099
|
[58] |
Hagel JM,Facchini PJ. Benzylisoquinoline alkaloid metabolism:a century of discovery and a brave new world[J]. Plant Cell Physiol,2013,54 (5):647−672. doi: 10.1093/pcp/pct020
|
[59] |
Kashiwada Y,Aoshima A,Ikeshiro Y,Chen YP,Furukawa H,et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera,and structure-activity correlations with related alkaloids[J]. Bioorg Med Chem,2005,13 (2):443−448. doi: 10.1016/j.bmc.2004.10.020
|
[60] |
Menéndez-Perdomo IM,Facchini PJ. Elucidation of the(R)-enantiospecific benzylisoquinoline alkaloid biosynthetic pathways in sacred lotus (Nelumbo nucifera)[J]. Sci Rep,2023,13:2955. doi: 10.1038/s41598-023-29415-0
|
[61] |
Deng XB,Zhao L,Fang T,Xiong YQ,Ogutu C,et al. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus[J]. Hortic Res,2018,5:29. doi: 10.1038/s41438-018-0035-0
|
[62] |
Yu YT,Liu Y,Dong GQ,Jiang JZ,Leng L,et al. Functional characterization and key residues engineering of a regiopromiscuity O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis in Nelumbo nucifera[J]. Hortic Res,2023,10 (2):uhac276. doi: 10.1093/hr/uhac276
|
[63] |
Feng CY,Li SS,Taguchi G,Wu Q,Yin DD,et al. Enzymatic basis for stepwise C-glycosylation in the formation of flavonoid di-C-glycosides in sacred lotus(Nelumbo nucifera Gaertn. )[J]. Plant J,2021,106 (2):351−365. doi: 10.1111/tpj.15168
|
[64] |
王海峰. 不同季节长期水淹对几种陆生植物的存活、生长和恢复生长的影响[D]. 重庆: 西南大学, 2008: 1-10.
|
[65] |
李祥志,刘兆磊,陈发棣,丁跃生,高迎,王宏辉. 荷花耐深水评价体系及耐深水鉴定[J]. 安徽农业科学,2014,42(3):679−682. doi: 10.3969/j.issn.0517-6611.2014.03.011
Li XZ,Liu ZL,Chen FD,Ding YS,Gao Y,Wang HH. Study on establishment of evaluation system for deepwater tolerance and its identification of Nelumbo nucifera Gaertn.[J]. Journal of Anhui Agricultural Sciences,2014,42 (3):679−682. doi: 10.3969/j.issn.0517-6611.2014.03.011
|
[66] |
Deng XB,Yang D,Sun H,Liu J,Song HY,et al. Time-course analysis and transcriptomic identification of key response strategies of Nelumbo nucifera to complete submergence[J]. Hortic Res,2022,9:uhac001. doi: 10.1093/hr/uhac001
|
[67] |
Wang B,Jin QJ,Zhang X,Mattson NS,Ren HH,et al. Genome-wide transcriptional analysis of submerged lotus reveals cooperative regulation and gene responses[J]. Sci Rep,2018,8:9187. doi: 10.1038/s41598-018-27530-x
|
[68] |
Jin QJ,Xu YC,Mattson NS,Li X,Wang B,et al. Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (Nelumbo nucifera Gaertn. )[J]. Front Plant Sci,2019,8:6.
|
[69] |
赵瑞霜. 荷花抗寒品种筛选及生理研究[D]. 南京: 南京农业大学, 2014: 1-10.
|
[70] |
黄勇琴. 自然越冬过程中冬荷抗寒及休眠生理生化特性研究[D]. 郑州: 河南农业大学, 2012: 1-10.
|
[71] |
Li X,Zhang D,Xu J,Jiang J,Jiang HW. The protective effect of cold acclimation on the low temperature stress of the lotus (Nelumbo nucifera)[J]. Hortic Sci,2022,49 (1):29−37. doi: 10.17221/62/2020-HORTSCI
|
[72] |
冷寒冰,秦俊,叶康,奉树成,高凯. 不同光照环境下荷花叶片光合光响应模型比较[J]. 应用生态学报,2014,25(10):2855−2860. doi: 10.13287/j.1001-9332.20140801.010
Leng HB,Qin J,Ye K,Feng SC,Gao K. Comparison of light response models of photosynthesis in Nelumbo nucifera leaves under different light conditions[J]. Chinese Journal of Applied Ecology,2014,25 (10):2855−2860. doi: 10.13287/j.1001-9332.20140801.010
|
[73] |
张晓,任惠惠,曹婧,苗其军,金奇江,等. 弱光导致荷花花芽败育的机制探析[J]. 南京农业大学学报,2019,42(6):1040−1049. doi: 10.7685/jnau.201904027
Zhang X,Ren HH,Cao J,Miao QJ,Jin QJ,et al. Analysis of the mechanism of lotus flower bud abortion caused by low light[J]. Journal of Nanjing Agricultural University,2019,42 (6):1040−1049. doi: 10.7685/jnau.201904027
|
[74] |
Sheng JY,Wang GD,Liu T,Xu Z,Zhang D. Comparative transcriptomic and proteomic profiling reveals molecular models of light signal regulation of shade tolerance in bowl lotus (Nelumbo nucifera)[J]. J Proteomics,2022,257:104455. doi: 10.1016/j.jprot.2021.104455
|
[75] |
张正庆,鲍美娥,陈嘉斌,郝海艳. 植物对重金属的耐性机制[J]. 甘肃科技,2013,29(5):69−71. doi: 10.3969/j.issn.1000-0952.2013.05.024
|
[76] |
司卫静. 荷花对铅尾矿渗出液的耐性及修复研究[D]. 南昌: 江西财经大学, 2013: 1-10.
|
[77] |
于辉,彭佳师,严明理. 镉在莲各器官中累积规律的研究[J]. 生态科学,2021,40(1):82−85. doi: 10.14108/j.cnki.1008-8873.2021.01.011
Yu H,Peng JS,Yan ML. Research on the accumulation of cadmium in lotus(Nelumbo nucifera Gaertn.) organs[J]. Ecological Science,2021,40 (1):82−85. doi: 10.14108/j.cnki.1008-8873.2021.01.011
|
[78] |
裴康康. 镉和锌胁迫对荷花种子萌发和生理生化的影响[D]. 郑州: 河南农业大学, 2010: 1-10.
|
[79] |
王海波. 荷花在硝酸铅环境下的生理变化及对铅吸收效应的研究[D]. 郑州: 河南农业大学, 2009: 1-10.
|
[80] |
苏少文,刘莹,黄志远,吴芳芳,刘艺平. 不同荷花对盐碱胁迫的响应[J]. 北方园艺,2020(23):52−59.
Su SW,Liu Y,Huang ZY,Wu FF,Liu YP. Response of different lotus flowers to saline-alkali stress[J]. Northern Horticulture,2020 (23):52−59.
|
[81] |
刘艺平,张一琪,苏少文,刘红利,贺丹,孔德政. 混合盐碱胁迫下不同抗性荷花品种比较转录组分析[J]. 江苏农业科学,2022,50(3):1−8. doi: 10.15889/j.issn.1002-1302.2022.03.001
Liu YP,Zhang YQ,Su SW,Liu HL,He D,Kong DZ. Comparative transcriptome analysis of different resistant lotus(Nelumbo nucifera) cultivars under mixed saline-alkali stress[J]. Jiangsu Agricultural Sciences,2022,50 (3):1−8. doi: 10.15889/j.issn.1002-1302.2022.03.001
|
[82] |
Liu RJ,Shi HT,Wang YP,Chen S,Deng J,et al. Comparative physiological analysis of lotus(Nelumbo nucifera) cultivars in response to salt stress and cloning of NnCIPK genes[J]. Sci Horticult,2014,173:29−36. doi: 10.1016/j.scienta.2014.04.032
|
[83] |
Cheng LB,Yang JJ,Yin L,Hui LC,Qian HM,et al. Transcription factor NnDREB1 from lotus improved drought tolerance in transgenic Arabidopsis thaliana[J]. Biol Plant,2017,61 (4):651−658. doi: 10.1007/s10535-017-0718-7
|
[84] |
Liu XJ,Du FF,Li NW,Chang YJ,Yao DR. Gene expression profile in the long-living lotus:insights into the heat stress response mechanism[J]. PLoS One,2016,11 (3):e0152540. doi: 10.1371/journal.pone.0152540
|
1. |
周静静,苗灵凤,李大东,田梦洁,杨帆. 旱-盐复合胁迫对降香黄檀幼苗生长和生理生化特性的影响. 热带亚热带植物学报. 2025(02): 197-206 .
![]() |