Advance Search
Tong ZY,Huang SQ. Potential selection driving evolution of long corolla tubes and case studies[J]. Plant Science Journal,2023,41(6):719−728. DOI: 10.11913/PSJ.2095-0837.23164
Citation: Tong ZY,Huang SQ. Potential selection driving evolution of long corolla tubes and case studies[J]. Plant Science Journal,2023,41(6):719−728. DOI: 10.11913/PSJ.2095-0837.23164

Potential selection driving evolution of long corolla tubes and case studies

Funds: This work was supported by grants from the National Key Research and Development Program (2021YFC3100404), National Natural Science Foundation of China (32030071, 31800192, 32071671) and Fundamental Research Funds for the Central Universities (CCNU22LJ003).
More Information
  • Received Date: June 03, 2023
  • Revised Date: July 23, 2023
  • Diverse corolla morphologies are thought to function in protecting sexual organs within flowers and attracting pollinators. The transition from open to tubular flowers is considered a key innovation in the evolution of corollas. A classic question that scholars have tried to answer since Darwin is: was the evolution of long corolla tubes caused by an arms-race relationship between the proboscis of the pollinator and the length of the corolla tube? Phenotypic manipulations have been conducted across multiple species with long corolla tubes to elucidate the mechanisms underlying the co-evolution between flowers and their interacting animal agents, driven by reciprocal selection. In this review, we summarize both the biotic and abiotic factors affecting corolla tube length, including the effects of pollinators, nectar robbers, and herbivores, as well as environmental factors like light and water availability. Moreover, we propose four potential evolutionary pathways for the development of pollinator-mediated long-tubed corollas. This review aims to provide insights and guidance for future studies on the evolution of tubular flowers.

  • [1]
    Endress PK. The evolution of floral biology in basal angiosperms[J]. Philos Transact Roy Soc B, 2010, 365(1539): 411-421.
    [2]
    Friis EM, Crane PR, Pedersen KR. Early Flowers and Angiosperm Evolution[M]. Cambridge: Cambridge University Press, 2011: 19.
    [3]
    Sauquet H,von Balthazar M,Magallón S,Doyle JA,Endress PK,et al. The ancestral flower of angiosperms and its early diversification[J]. Nat Commun,2017,8 (1):16047. doi: 10.1038/ncomms16047
    [4]
    Nilsson LA. The evolution of flowers with deep corolla tubes[J]. Nature,1988,334 (6178):147−149. doi: 10.1038/334147a0
    [5]
    Endress PK. Origins of flower morphology[J]. J Exp Zool,2001,291 (2):105−115. doi: 10.1002/jez.1063
    [6]
    Gurung V,Yuan YW,Diggle PK. Comparative analysis of corolla tube development across three closely related Mimulus species with different pollination syndromes[J]. Evol Dev,2021,23 (3):244−255. doi: 10.1111/ede.12368
    [7]
    Darwin CR. On the Various Contrivances by Which British and Foreign Orchids Are Fertilised by Insects[M]. London: John Murray, 1862: 1–100.
    [8]
    Tong ZY,Wu LY,Feng HH,Zhang M,Renner SS,Huang SQ. New calculations indicate that 90% of flowering plant species are animal-pollinated[J]. Nat Sci Rev,2023,10 (10):nwad219. doi: 10.1093/nsr/nwad219
    [9]
    Heinrich B,Raven PH. Energetics and pollination ecology[J]. Science,1972,176 (4035):597−602. doi: 10.1126/science.176.4035.597
    [10]
    Neu A,Cooksley H,Esler KJ,Pauw A,Roets F,et al. Interactions between protea plants and their animal mutualists and antagonists are structured more by energetic than morphological trait matching[J]. Funct Ecol,2023,37 (1):176−189. doi: 10.1111/1365-2435.14231
    [11]
    Whittall JB,Hodges SA. Pollinator shifts drive increasingly long nectar spurs in columbine flowers[J]. Nature,2007,447 (7145):706−709. doi: 10.1038/nature05857
    [12]
    Pauw A,Kahnt B,Kuhlmann M,Michez D,Montgomery GA,et al. Long-legged bees make adaptive leaps:linking adaptation to coevolution in a plant–pollinator network[J]. Proc Roy Soc B:Biol Sci,2017,284 (1862):20171707.
    [13]
    Egawa S,Hirose K,Itino T. Geographic changes in pollinator species composition affect the corolla tube length of self-heal (Prunella vulgaris L.):evidence from three elevational gradients[J]. Ecol Res,2020,35 (5):819−825. doi: 10.1111/1440-1703.12146
    [14]
    Anderson B,Johnson SD. Geographical covariation and local convergence of flower depth in a guild of fly‐pollinated plants[J]. New Phytol,2009,182 (2):533−540. doi: 10.1111/j.1469-8137.2009.02764.x
    [15]
    Van der Niet T,Pirie MD,Shuttleworth A,Johnson SD,Midgley JJ. Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii?[J]. Ann Bot,2014,113 (2):301−316. doi: 10.1093/aob/mct193
    [16]
    Paudel BR,Shrestha M,Burd M,Adhikari S,Sun YS,Li QJ. Coevolutionary elaboration of pollination‐related traits in an alpine ginger (Roscoea purpurea) and a tabanid fly in the Nepalese Himalayas[J]. New Phytol,2016,211 (4):1402−1411. doi: 10.1111/nph.13974
    [17]
    Miller-Struttmann NE,Geib JC,Franklin JD,Kevan PG,Holdo RM,et al. Functional mismatch in a bumble bee pollination mutualism under climate change[J]. Science,2015,349 (6255):1541−1544. doi: 10.1126/science.aab0868
    [18]
    Armbruster WS,Wege JA. Detecting canalization and intra-floral modularity in triggerplant (Stylidium) flowers:correlations are only part of the story[J]. Ann Bot,2019,123 (2):355−372. doi: 10.1093/aob/mcy184
    [19]
    Aigner PA. Optimality modeling and fitness trade-offs:when should plants become pollinator specialists?[J]. Oikos,2001,95 (1):177−184. doi: 10.1034/j.1600-0706.2001.950121.x
    [20]
    Aigner PA. Floral specialization without trade-offs:optimal corolla flare in contrasting pollination environments[J]. Ecology,2004,85 (9):2560−2569. doi: 10.1890/03-0815
    [21]
    Armbruster WS. Floral specialization and angiosperm diversity:phenotypic divergence,fitness trade-offs and realized pollination accuracy[J]. AoB Plants,2014,6:plu003.
    [22]
    Pauw A,Cocucci AA,Sérsic AN. The least effective pollinator principle:specialized morphology despite generalized ecology[J]. Plant Biol,2020,22 (5):924−931. doi: 10.1111/plb.13145
    [23]
    Arditti J,Elliott J,Kitching IJ,Wasserthal LT. ‘Good Heavens what insect can suck it’: Charles Darwin,Angraecum sesquipedale and Xanthopan morganii praedicta[J]. Bot J Linn Soc,2012,169 (3):403−432. doi: 10.1111/j.1095-8339.2012.01250.x
    [24]
    Nilsson LA. Deep flowers for long tongues[J]. Trends Ecol Evol,1998,13 (7):259−260. doi: 10.1016/S0169-5347(98)01359-7
    [25]
    Wasserthal LT. The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Botanica Acta, 1997, 110(5): 343-359.
    [26]
    Muchhala N,Thomson JD. Going to great lengths:selection for long corolla tubes in an extremely specialized bat–flower mutualism[J]. Proc Roy Soc B:Biol Sci,2009,276 (1665):2147−2152.
    [27]
    Abrahamczyk S,Souto-Vilarós D,Renner SS. Escape from extreme specialization:passionflowers,bats and the sword-billed hummingbird[J]. Proc Roy Soc B:Biol Sci,2014,281 (1795):20140888.
    [28]
    Steiner KE,Whitehead VB. Oil flowers and oil bees:further evidence for pollinator adaptation[J]. Evolution,1991,45 (6):1493−1501. doi: 10.2307/2409895
    [29]
    Pauw A. Floral syndromes accurately predict pollination by a specialized oil-collecting bee (Rediviva peringueyi,Melittidae) in a guild of South African orchids (Coryciinae)[J]. Am J Bot,2006,93 (6):917−926. doi: 10.3732/ajb.93.6.917
    [30]
    Cosacov A,Cocucci AA,Sérsic AN. Geographical differentiation in floral traits across the distribution range of the Patagonian oil-secreting Calceolaria polyrhiza:do pollinators matter?[J]. Ann Bot,2014,113 (2):251−266. doi: 10.1093/aob/mct239
    [31]
    Van der Kooi CJ,Vallejo-Marín M,Leonhardt SD. Mutualisms and (A) symmetry in plant-pollinator interactions[J]. Current Biol,2021,31 (2):R91−R99. doi: 10.1016/j.cub.2020.11.020
    [32]
    Mackin CR,Peña JF,Blanco MA,Balfour NJ,Castellanos MC. Rapid evolution of a floral trait following acquisition of novel pollinators[J]. J Ecol,2021,109 (5):2234−2246. doi: 10.1111/1365-2745.13636
    [33]
    García M,Benítez-Vieyra S,Sérsic AN,Pauw A,Cocucci AA,et al. Is variation in flower shape and length among native and non-native populations of Nicotiana glauca a product of pollinator-mediated selection?[J]. Evol Ecol,2020,34 (6):893−913. doi: 10.1007/s10682-020-10082-w
    [34]
    Rodríguez-Gironés MA,Llandres AL. Resource competition triggers the co-evolution of long tongues and deep corolla tubes[J]. PLoS One,2008,3 (8):e2992. doi: 10.1371/journal.pone.0002992
    [35]
    Rodríguez-Gironés MA,Santamaría L. Resource competition,character displacement,and the evolution of deep corolla tubes[J]. Am Nat,2007,170 (3):455−464. doi: 10.1086/520121
    [36]
    Muchhala N,Brown Z,Armbruster WS,Potts MD. Competition drives specialization in pollination systems through costs to male fitness[J]. Am Nat,2010,176 (6):732−743. doi: 10.1086/657049
    [37]
    Martins DJ,Johnson SD. Interactions between hawkmoths and flowering plants in East Africa:polyphagy and evolutionary specialization in an ecological context[J]. Biol J Linn Soc,2013,110 (1):199−213. doi: 10.1111/bij.12107
    [38]
    Johnson SD,Raguso RA. The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa[J]. Ann Bot,2016,117 (1):25−36. doi: 10.1093/aob/mcv137
    [39]
    Johnson SD,Moré M,Amorim FW,Haber WA,Frankie GW,et al. The long and the short of it:a global analysis of hawkmoth pollination niches and interaction networks[J]. Funct Ecol,2017,31 (1):101−115. doi: 10.1111/1365-2435.12753
    [40]
    Agosta SJ,Janzen DH. Body size distributions of large Costa Rican dry forest moths and the underlying relationship between plant and pollinator morphology[J]. Oikos,2005,108 (1):183−193. doi: 10.1111/j.0030-1299.2005.13504.x
    [41]
    Armbruster WS. The specialization continuum in pollination systems:diversity of concepts and implications for ecology,evolution and conservation[J]. Funct Ecol,2017,31 (1):88−100. doi: 10.1111/1365-2435.12783
    [42]
    Pi HQ,Quan QM,Wu B,Lv XW,Shen LM,Huang SQ. Altitude-related shift of relative abundance from insect to sunbird pollination in Elaeagnus umbellata (Elaeagnaceae)[J]. J Syst Evol,2021,59 (6):1266−1275. doi: 10.1111/jse.12685
    [43]
    Opedal ØH,Albertsen E,Armbruster WS,Pérez-Barrales R,Falahati-Anbaran M,Pélabon C. Evolutionary consequences of ecological factors:pollinator reliability predicts mating-system traits of a perennial plant[J]. Ecol Lett,2016,19 (12):1486−1495. doi: 10.1111/ele.12701
    [44]
    Ollerton J,Killick A,Lamborn E,Watts S,Whiston M. Multiple meanings and modes:on the many ways to be a generalist flower[J]. Taxon,2007,56 (3):717−728. doi: 10.2307/25065855
    [45]
    Stebbins GL. Adaptive radiation of reproductive characteristics in angiosperms,I:pollination mechanisms[J]. Ann Rev Ecol Syst,1970,1:307−326. doi: 10.1146/annurev.es.01.110170.001515
    [46]
    Tang YF,Fang Y,Liu CQ,Lu QB,Hu XH. The long spur of Impatiens macrovexilla may reflect adaptation to diurnal hawkmoth pollinators despite diversity of floral visitors[J]. Flora,2020,266:151599. doi: 10.1016/j.flora.2020.151599
    [47]
    Baker HG. “Mistake” pollination as a reproductive system with special reference to the Caricaceae[M]//Burley J, Styles BT, eds. Tropical Trees: Variation, Breeding and Conservation. New York: Academic Press, 1976: 161-169.
    [48]
    Davis CC,Schaefer H,Xi ZX,Baum DA,Donoghue MJ,Harmon LJ. Long-term morphological stasis maintained by a plant-pollinator mutualism[J]. Proc Natl Acad Sci USA,2014,111 (16):5914−5919. doi: 10.1073/pnas.1403157111
    [49]
    Armbruster WS. Evolution of plant pollination systems:hypotheses and tests with the neotropical vine Dalechampia[J]. Evolution,1993,47 (5):1480−1505. doi: 10.2307/2410162
    [50]
    Riska B. Some models for development,growth,and morphometric correlation[J]. Evolution,1986,40 (6):1303−1311. doi: 10.2307/2408955
    [51]
    Riska B. Composite traits,selection response,and evolution[J]. Evolution,1989,43 (6):1172−1191. doi: 10.2307/2409355
    [52]
    Hansen TF,Armbruster WS. Carlson ML,Pélabon C. Evolvability and genetic constraint in Dalechampia blossoms:genetic correlations and conditional evolvability[J]. J Exp Zool Part B:Mol Dev Evol,2003,296B (1):23−39. doi: 10.1002/jez.b.14
    [53]
    Armbruster WS. Multilevel analysis of morphometric data from natural plant populations:insights into ontogenetic,genetic,and selective correlations in Dalechampia scandens[J]. Evolution,1991,45 (5):1229−1244. doi: 10.2307/2409730
    [54]
    O'Meara BC,Smith SD,Armbruster WS,Harder LD,Hardy CR,et al. Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity[J]. Proc Roy Soc B:Biol Sci,2016,283 (1830):20152304.
    [55]
    Conner J,Via S. Patterns of phenotypic and genetic correlations among morphological and life-history traits in wild radish,Raphanus raphanistrum[J]. Evolution,1993,47 (2):704−711. doi: 10.2307/2410086
    [56]
    Conner JK,Sterling A. Testing hypotheses of functional relationships:a comparative survey of correlation patterns among floral traits in five insect-pollinated plants[J]. Am J Bot,1995,82 (11):1399−1406.
    [57]
    Yang CF,Guo YH. Pollen size-number trade-off and pollen-pistil relationships in Pedicularis (Orobanchaceae)[J]. Plant Syst Evol,2004,247 (3-4):177−185.
    [58]
    Schluter D. Adaptive radiation along genetic lines of least resistance[J]. Evolution,1996,50 (5):1766−1774. doi: 10.2307/2410734
    [59]
    Bolstad GH,Hansen TF,Pélabon C,Falahati-Anbaran M,Pérez-Barrales R,Armbruster WS. Genetic constraints predict evolutionary divergence in Dalechampia blossoms[J]. Philos Trans Roy Soc B:Biol Sci,2014,369 (1649):20130255. doi: 10.1098/rstb.2013.0255
    [60]
    Opedal ØH,Armbruster WS,Hansen TF,Holstad A,Pélabon C,et al. Evolvability and trait function predict phenotypic divergence of plant populations[J]. Proc Natl Acad Sci USA,2023,120 (1):e2203228120. doi: 10.1073/pnas.2203228120
    [61]
    Lázaro A,Vignolo C,Santamaría L. Long corollas as nectar barriers in Lonicera implexa:interactions between corolla tube length and nectar volume[J]. Evol Ecol,2015,29 (3):419−435. doi: 10.1007/s10682-014-9736-5
    [62]
    Torres C,Galetto L. Are nectar sugar composition and corolla tube length related to the diversity of insects that visit Asteraceae flowers?[J]. Plant Biol,2002,4 (3):360−366. doi: 10.1055/s-2002-32326
    [63]
    Li HL. Evolution in the flowers of Pedicularis[J]. Evolution,1951,5 (2):158−164. doi: 10.2307/2405766
    [64]
    Ree RH. Phylogeny and the evolution of floral diversity in Pedicularis (Orobanchaceae)[J]. Int J Plant Sci,2005,166 (4):595−613. doi: 10.1086/430191
    [65]
    Huang SQ,Wang XP,Sun SG. Are long corolla tubes in Pedicularis driven by pollinator selection?[J]. J Integrat Plant Biol,2016,58 (8):698−700. doi: 10.1111/jipb.12460
    [66]
    Huang SQ,Fenster CB. Absence of long-proboscid pollinators for long-corolla-tubed Himalayan Pedicularis species:implications for the evolution of corolla length[J]. Int J Plant Sci,2007,168 (3):325−331. doi: 10.1086/510209
    [67]
    Wang XP,Huang SQ. Interspecific and intraspecific variation in corolla tube length in Pedicularis species achieved by both cell anisotropy and division[J]. J Syst Evol,2017,55 (3):208−214. doi: 10.1111/jse.12239
    [68]
    Navarro L, Medel R. 2009. Relationship between floral tube length and nectar robbing in Duranta erecta L. (Verbenaceae)[J]. Biol J Linn Soc, 2029, 96(2): 392-398.
    [69]
    Jogesh T,Overson RP,Raguso RA,Skogen KA. Herbivory as an important selective force in the evolution of floral traits and pollinator shifts[J]. AoB Plants,2017,9 (1):plw088.
    [70]
    Galen C,Cuba J. Down the tube:pollinators,predators,and the evolution of flower shape in the alpine skypilot,Polemonium viscosum[J]. Evolution,2001,55 (10):1963−1971.
    [71]
    Villarreal AG,Freeman CE. Effects of temperature and water stress on some floral nectar characteristics in Ipomopsis longiflora (Polemoniaceae) under controlled conditions[J]. Bot Gazette,1990,151 (1):5−9. doi: 10.1086/337797
    [72]
    Koti S,Reddy KR,Reddy VR,Kakani VG,Zhao DL. Interactive effects of carbon dioxide,temperature,and ultraviolet-B radiation on soybean (Glycine max L. ) flower and pollen morphology,pollen production,germination,and tube lengths[J]. J Exp Bot,2005,56 (412):725−736. doi: 10.1093/jxb/eri044
    [73]
    Barbir J,Dorado J,Fernández-Quintanilla C,Blanusa T,Maksimovic C,Badenes-Pérez FR. Wild rocket-effect of water deficit on growth,flowering,and attractiveness to pollinators[J]. Acta Agr Scand B-S P,2014,64 (6):482−492.
    [74]
    Stark DSP. Anatomical and physiological studies of floral tube elongation of Crocus vernus (Iridaceae)[J]. Am J Bot,1982,69 (9):1476−1482. doi: 10.1002/j.1537-2197.1982.tb13396.x
    [75]
    Tong ZY,Wang XP,Wu LY,Huang SQ. Nectar supplementation changes pollinator behaviour and pollination mode in Pedicularis dichotoma:implications for evolutionary transitions[J]. Ann Bot,2019,123 (2):373−380. doi: 10.1093/aob/mcy102
  • Related Articles

    [1]Jin Jiang-Qun, Ren Feng-Ming, Xia Ying, Liu Zheng-Yu, Chen Yu-Han, Zhang Jun. Research on reproductive phenology, pollination, and embryonic development of Thuja sutchuenensis Franch., a plant species with extremely small populations[J]. Plant Science Journal, 2020, 38(5): 696-706. DOI: 10.11913/PSJ.2095-0837.2020.50696
    [2]Tang Rong, Huang Bao-Guo, Sun Wei-Bang, Chen Gao. Pollination biology of Amorphophallus albus (Araceae), an endemic plant in the dry-hot valley of Jinsha River[J]. Plant Science Journal, 2020, 38(4): 458-466. DOI: 10.11913/PSJ.2095-0837.2020.40458
    [3]Zhang Wei, He Cheng-Bin, Gong Yan-Bing. Pollinator attraction and outcrossing strategies in Iris[J]. Plant Science Journal, 2019, 37(5): 672-681. DOI: 10.11913/PSJ.2095-0837.2019.50672
    [4]Liu Ya-Lin, Wu Xiu-Wen, Yan Lei, Du Chen-Qing, Jiang Cun-Cang. Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall[J]. Plant Science Journal, 2018, 36(5): 767-773. DOI: 10.11913/PSJ.2095-0837.2018.50767
    [5]Aysajan Abdusalam, Gulzar Abdukirim. Pollination characteristics of two sympatrically distributed Tamarix species in south Xinjiang, China[J]. Plant Science Journal, 2018, 36(2): 162-169. DOI: 10.11913/PSJ.2095-0837.2018.20162
    [6]Zhu Hua. Origin and evolution of the flora of Yunnan[J]. Plant Science Journal, 2018, 36(1): 32-37. DOI: 10.11913/PSJ.2095-0837.2018.10032
    [7]Wang Hui, Li Xiao-Xia. Differentiation in breeding system and pollination of three sympatric Corydalis species[J]. Plant Science Journal, 2017, 35(2): 186-193. DOI: 10.11913/PSJ.2095-0837.2017.20186
    [8]ZHAGN Yang, YE Qi-Gang. Breeding System of the Endangered Species Psilopeganum sinense and Its Pollination Process in a Botanical Garden[J]. Plant Science Journal, 2011, 1(5): 599-606.
    [9]ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.
    [10]WANG Bing-Yi, SU Jian-Rong, ZHANG Zhi-Jun. Pollination Biology in Taxus yunnanensis[J]. Plant Science Journal, 2009, 27(4): 441-445.

Catalog

    Article views (235) PDF downloads (119) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return