Citation: | Liu YL,Tang HY,Wan Q,Yan YM,Ma LL,Cao D,Jin XF. Metabolite changes in new shoots of Camellia sinensis (L.) O. Kuntze infested by tea aphids[J]. Plant Science Journal,2023,41(5):657−667. DOI: 10.11913/PSJ.2095-0837.23251 |
Tea aphids are a major insect pest of tea plants (Camellia sinensis (L.) O. Kuntze), resulting in both tea production loss and tea quality decline. Secondary metabolites play vital roles in plant resistance against aphid feeding. Therefore, understanding changes in metabolites before and after tea aphid infestation is essential for the screening and breeding of aphid-resistant tea varieties. In the current study, metabolomics profiling, quantitative analysis of metabolites, and determination of phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) activities and proline (Pro) content were performed in new shoots of the ‘Echa 1’ tea variety infested with tea aphids, using non-infested plants as controls. Results showed that 35.4% of ‘Echa 1’ was colonized by tea aphids, suggesting that ‘Echa 1’ exhibited medium resistance to tea aphids. In parallel, significantly higher PPO activity, markedly higher soluble sugar, total flavonoid, and Pro contents, and significantly lower tea polyphenol content were found after aphid infestation. Eight significantly accumulated metabolites, including three primary metabolites and five secondary metabolites, were also detected. The three primary metabolites were all up-regulated in aphid-impacted shoots, which may confer precursors for secondary metabolite biosynthesis and modify the nutritional compounds utilized by tea aphids. The five secondary metabolites included jasmonate-isoleucine (JA-Ile) and four flavonoids. JA-Ile, responsible for defense-related signaling molecules, was significantly up-regulated after aphid-feeding, functioning in the activation of downstream defensive pathways, while the flavonoids served as defense compounds against the tea aphids. Taken together, these results suggest that JA-Ile, flavonoids, and Pro are important defensive compounds against tea aphids in tea plants.
[1] |
Jakobs R,Schweiger R,Müller C. Aphid infestation leads to plant part-specific changes in phloem sap chemistry,which may indicate niche construction[J]. New Phytol,2019,221 (1):503−514. doi: 10.1111/nph.15335
|
[2] |
Lan H,Zhang ZF,Wu J,Cao HH,Liu TX. Performance and transcriptomic response of the English grain aphid,Sitobion avenae,feeding on resistant and susceptible wheat cultivars[J]. J Integr Agric,2021,20 (1):178−190. doi: 10.1016/S2095-3119(20)63349-4
|
[3] |
Züst T,Agrawal AA. Mechanisms and evolution of plant resistance to aphids[J]. Nat Plants,2016,2 (1):15206. doi: 10.1038/nplants.2015.206
|
[4] |
Leybourne DJ,Valentine TA,Robertson JAH,Pérez-Fernández E,Main AM,et al. Defence gene expression and phloem quality contribute to mesophyll and phloem resistance to aphids in wild barley[J]. J Exp Bot,2019,70 (15):4011−4026. doi: 10.1093/jxb/erz163
|
[5] |
冉伟. 基于代谢组学的蚜虫为害降低茶树对茶尺蠖的抗性机制研究[D]. 北京: 中国农业科学院, 2018: 13-17.
|
[6] |
范元兰. 长尖叶蔷薇响应蔷薇长管蚜胁迫的转录组与代谢组分析[D]. 昆明: 云南大学, 2021: 55-56.
|
[7] |
闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,等. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学,2022,55(6):1149−1158.
Yan LL,Bu LL,Niu L,Zeng WF,Lu ZH,et al. Widely targeted metabolomics analysis of the effects of Myzus persicae feeding on Prunus persica secondary metabolites[J]. Scientia Agricultura Sinica,2022,55 (6):1149−1158.
|
[8] |
Stolpe C,Giehren F,Krӓmer U,Müller C. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant[J]. Phytochemistry,2017,139:109−117. doi: 10.1016/j.phytochem.2017.04.010
|
[9] |
Morkunas I,Mai VC,Gabryś B. Phytohormonal signaling in plant responses to aphid feeding[J]. Acta Physiol Plant,2011,33 (6):2057−2073. doi: 10.1007/s11738-011-0751-7
|
[10] |
Mai VC,Bednarski W,Borowiak-Sobkowiak B,Wilkaniec B,Samardakiewicz S,Morkunas I. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation[J]. Phytochemistry,2013,93:49−62. doi: 10.1016/j.phytochem.2013.02.011
|
[11] |
Mai VC,Drzewiecka K,Jeleń H,Narożna D,Rucińska-Sobkowiak R,et al. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation[J]. Plant Sci,2014,221-222:1−12. doi: 10.1016/j.plantsci.2014.01.011
|
[12] |
Liang DN,Liu M,Hu QJ,He M,Qi XH,et al. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.)[J]. Sci Rep,2015,5 (1):9645. doi: 10.1038/srep09645
|
[13] |
Luo J,Wei K,Wang SH,Zhao WY,Ma CR,et al. COI1-regulated hydroxylation of Jasmonoyl-L-isoleucine impairs Nicotiana attenuata’s resistance to the generalist herbivore Spodoptera litura[J]. J Agric Food Chem,2016,64 (14):2822−2831. doi: 10.1021/acs.jafc.5b06056
|
[14] |
芦屹,王惠卿,陈刘生,王佩玲,李晶. 新疆棉花品种次生代谢酶活性与诱导抗蚜性的关系[J]. 植物保护,2017,43(4):51−55. doi: 10.3969/j.issn.0529-1542.2017.04.009
Lu Y,Wang HQ,Chen LS,Wang PL,Li J. Correlation between induced resistance to aphids and secondary metabolism enzyme activities of cotton varieties in Xinjiang[J]. Plant Protection,2017,43 (4):51−55. doi: 10.3969/j.issn.0529-1542.2017.04.009
|
[15] |
马荣金,李田田,刘桂军,曹辰兴. 不同黄瓜材料抗蚜性与部分次生代谢物及其相关酶活力的关系[J]. 中国农学通报,2015,31(19):80−86. doi: 10.11924/j.issn.1000-6850.casb15010197
Ma RJ,Li TT,Liu GJ,Cao CX. The relationship between aphid-resistance of different cucumber materials and part of secondary metabolites and their related enzyme activities[J]. Chinese Agricultural Science Bulletin,2015,31 (19):80−86. doi: 10.11924/j.issn.1000-6850.casb15010197
|
[16] |
王蔓. 苹果黄蚜取食和水杨酸处理诱导的苹果苗对山楂叶螨和苹果全爪螨的影响[D]. 泰安: 山东农业大学, 2020: 5-7.
|
[17] |
Kaur R,Gupta AK,Taggar GK. Induced resistance by oxidative shifts in pigeonpea (Cajanus cajan L. ) following Helicoverpa armigera (Hübner) herbivory[J]. Pest Manag Sci,2015,71 (5):770−782. doi: 10.1002/ps.3851
|
[18] |
商业部茶叶畜产局商业部杭州茶叶加工研究所. 茶叶品质理化分析[M]. 上海: 上海科学技术出版社, 1989: 340-350.
|
[19] |
郭祖国,王梦馨,崔林,韩宝瑜. 6种防御酶调控植物体应答虫害胁迫机制的研究进展[J]. 应用生态学报,2018,29(12):4248−4258.
Guo ZG,Wang MX,Cui L,Han BY. Research progress on the underlying mechanisms of plant defense enzymes in response to pest stress[J]. Chinese Journal of Applied Ecology,2018,29 (12):4248−4258.
|
[20] |
Trovato M, Forlani G, Signorelli S, Funck D. Proline metabolism and its functions in development and stress tolerance[M]//Hossain MA, Kumar V, Burritt DJ, Fujita M, Mäkelä PSA, eds. Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Cham: Springer, 2019: 41-72.
|
[21] |
Bian XH,Li W,Niu CF,Wei W,Hu Y,et al. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis[J]. New Phytol,2020,225 (1):268−283. doi: 10.1111/nph.16104
|
[22] |
Song ZH,Yang Q,Dong BY,Li N,Wang MY,et al. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment,particularly luteolin in response to salt stress[J]. J Exp Bot,2022,73 (17):5992−6008. doi: 10.1093/jxb/erac276
|
[23] |
Nakabayashi R,Yonekura-Sakakibara K,Urano K,Suzuki M,Yamada Y,et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. Plant J,2014,77 (3):367−379. doi: 10.1111/tpj.12388
|
[24] |
Margaria P,Ferrandino A,Caciagli P,Kedrina O,Schubert A,et al. Metabolic and transcript analysis of the flavonoid pathway in diseased and recovered Nebbiolo and Barbera grapevines (Vitis vinifera L. ) following infection by Flavescence dorée phytoplasma[J]. Plant Cell Environ,2014,37 (9):2183−2200. doi: 10.1111/pce.12332
|
[25] |
Dong NQ,Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. J Integr Plant Biol,2021,63 (1):180−209. doi: 10.1111/jipb.13054
|
[26] |
Goławska S,Łukasik I,Goławskir A,Kapusta I,Janda B. Alfalfa (Medicugo sutiva L. ) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum)[J]. Polish J Environ Stud,2010,19 (5):913−919.
|
[27] |
Goławska S,Łukasik I. Antifeedant activity of luteolin and genistein against the pea aphid,Acyrthosiphon pisum[J]. J Pest Sci,2012,85 (4):443−450. doi: 10.1007/s10340-012-0452-z
|
[28] |
Li MY,Yu GH,Cao CL,Liu P. Metabolism,signaling,and transport of jasmonates[J]. Plant Commun,2021,2 (5):100231. doi: 10.1016/j.xplc.2021.100231
|
[29] |
Wang FF,Yu GH,Liu P. Transporter-mediated subcellular distribution in the metabolism and signaling of jasmonates[J]. Front Plant Sci,2019,10:390. doi: 10.3389/fpls.2019.00390
|
[30] |
Zhuang HF,Li J,Song J,Hettenhausen C,Schuman MC,et al. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host[J]. New Phytol,2018,218 (4):1586−1596. doi: 10.1111/nph.15083
|
[31] |
Chapman KM,Marchi-Werle L,Hunt TE,Heng-Moss TM,Louis J. Abscisic and jasmonic acids contribute to soybean tolerance to the soybean aphid (Aphis glycines Matsumura)[J]. Sci Rep,2018,8 (1):15148. doi: 10.1038/s41598-018-33477-w
|
[32] |
Ellis C,Karafyllidis L,Turner JG. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum,Pseudomonas syringae,and Myzus persicae[J]. Mol Plant Microbe Interact,2002,15 (10):1025−1030. doi: 10.1094/MPMI.2002.15.10.1025
|
[33] |
De Vos M,Kim JH,Jander G. Biochemistry and molecular biology of Arabidopsis-aphid interactions[J]. BioEssays,2007,29 (9):871−883. doi: 10.1002/bies.20624
|
[34] |
Gao LL,Anderson JP,Klingler JP,Nair RM,Edwards OR,Singh KB. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula[J]. Mol Plant Microbe Interact,2007,20 (1):82−93. doi: 10.1094/MPMI-20-0082
|
[35] |
Kerchev PI,Fenton B,Foyer CH,Hancock RD. Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and is influenced by ascorbate[J]. Plant Cell Environ,2012,35 (2):430−440. doi: 10.1111/j.1365-3040.2011.02395.x
|
[36] |
Yates-Stewart AD,Pekarcik A,Michel A,Blakeslee JJ. Jasmonic acid-isoleucine (JA-Ile) is involved in the host-plant resistance mechanism against the soybean aphid (Hemiptera:Aphididae)[J]. J Econ Entomol,2020,113 (6):2972−2978. doi: 10.1093/jee/toaa221
|
[37] |
Grover S,Agpawa E,Sarath G,Sattler SE,Louis J. Interplay of phytohormones facilitate sorghum tolerance to aphids[J]. Plant Mol Biol,2022,109 (4-5):639−650. doi: 10.1007/s11103-020-01083-y
|
[38] |
赵福庚,孙诚,刘友良,章文华. 盐胁迫下大麦幼苗多胺与脯氨酸合成竞争前体L-Arg[J]. 作物学报,2001,27(5):622−626.
Zhao FG,Sun C,Liu YL,Zhang WH. The biosyntheses of polyamines and proline competed for precursor L-Arginine in barley seedlings under salt stress[J]. Acta Agronomica Sinica,2001,27 (5):622−626.
|
[39] |
Zarattini M,Forlani G. Toward unveiling the mechanisms for transcriptional regulation of proline biosynthesis in the plant cell response to biotic and abiotic stress conditions[J]. Front Plant Sci,2017,8:927. doi: 10.3389/fpls.2017.00927
|
[40] |
吴梅梅,杨丽荣,杨小振,张显,马建祥,等. 蚜虫侵染对西瓜幼苗生理生化指标的影响[J]. 果树学报,2015,32(5):943−949.
Wu MM,Yang LR,Yang XZ,Zhang X,Ma JX,et al. Effect of aphid invasion on physiological and biochemical indexes in watermelon seedling stage[J]. Journal of Fruit Science,2015,32 (5):943−949.
|
[41] |
邓小霞,江海澜,彭俊,何泽敏,马天文,王俊刚. 花铃期棉花对棉蚜刺吸胁迫的生理响应[J]. 应用昆虫学报,2013,50(1):161−166.
Deng XX,Jiang HL,Peng J,He ZM,Ma TW,Wang JG. Physiological responses of cotton to feeding by Aphis gossypii during the flower-bolling stage[J]. Chinese Journal of Applied Entomology,2013,50 (1):161−166.
|
[42] |
Kumar A,Yadav S,Ahlawat N,Yadav J. Biochemical basis of resistance to mustard aphid Lipaphis erysimi (Kaltenbach)[J]. Indian J Entomol,2020,82 (4):875−879. doi: 10.5958/0974-8172.2021.00027.4
|
[43] |
Xu LJ,Hou QL,Zhao YJ,Ni ZF,Liang HZ,Liang RQ. Biochemical responses of resistant and susceptible wheat cultivars to English grain aphid (Sitobio avenae F. ) at grain-filling stage[J]. Acad J Biotechnol,2016,4 (7):276−284.
|
[44] |
Douglas AE. The nutritional physiology of aphids[J]. Adv Insect Physiol,2003,31:73−140.
|