Advance Search
Zhao H,Xia HX,Yang YL,Li Y. Identification and comparison of SQUAMOSA promoter-binding protein in different Osmanthus fragrans Lour. varieties[J]. Plant Science Journal,2024,42(6):774−781. DOI: 10.11913/PSJ.2095-0837.23373
Citation: Zhao H,Xia HX,Yang YL,Li Y. Identification and comparison of SQUAMOSA promoter-binding protein in different Osmanthus fragrans Lour. varieties[J]. Plant Science Journal,2024,42(6):774−781. DOI: 10.11913/PSJ.2095-0837.23373

Identification and comparison of SQUAMOSA promoter-binding protein in different Osmanthus fragrans Lour. varieties

More Information
  • Received Date: December 11, 2023
  • Accepted Date: January 21, 2024
  • The SQUAMOSA promoter-binding protein (SBP/SPL) family represents a group of plant-specific transcription factors involved in diverse biological processes. In this study, genomic data were used to identify and analyze SBP gene family members across four varieties of Osmanthus fragrans Lour. A total of 172 SBP genes were identified, with each variety exhibiting distinct numbers of genes and unique chromosomal distributions. Phylogenetic analysis classified these genes into nine subfamilies, with variations in the subfamily distribution across the four varieties. Members within the same subfamily shared similar gene modules and structures, all containing the conserved domains characteristic of SBP genes. Promoter analysis revealed that the cis-acting elements of SBP genes were associated with plant hormones, growth and development, defense, and stress. Tissue-specific analysis demonstrated that most SBP genes were expressed in the stems, leaves, and flowers, suggesting functional involvement in these tissues.

  • [1]
    Ren YY,Ma R,Fan Y,Zhao BJ,Cheng P,et al. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Quinoa(Chenopodium quinoa)[J]. BMC Genomics,2022,23(1):773. doi: 10.1186/s12864-022-08977-9
    [2]
    Riechmann JL,Heard J,Martin G,Reuber L,Jiang CZ, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290(5499):2105−2110.
    [3]
    Liu YH,Yuan JY,Zhang D,Deng K,Chai GF,et al. Genome-wide identification and characterization of the SBP gene family in passion fruit(Passiflora edulis Sims)[J]. Int J Mol Sci,2022,23(22):14153. doi: 10.3390/ijms232214153
    [4]
    Li J,Gao XY,Sang SY,Liu CN. Genome-wide identification,phylogeny,and expression analysis of the SBP-box gene family in Euphorbiaceae[J]. BMC Genomics,2019,20(S9):912. doi: 10.1186/s12864-019-6319-4
    [5]
    Lai DL,Fan Y,Xue GX,He AL,Yang H,et al. Genome-wide identification and characterization of the SPL gene family and its expression in the various developmental stages and stress conditions in foxtail millet(Setaria italica)[J]. BMC Genomics,2022,23(1):389. doi: 10.1186/s12864-022-08633-2
    [6]
    Birkenbihl RP,Jach G,Saedler H,Huijser P. Functional dissection of the plant-specific SBP-domain:overlap of the DNA-binding and nuclear localization domains[J]. J Mol Biol,2005,352(3):585−596. doi: 10.1016/j.jmb.2005.07.013
    [7]
    Cardon G,Höhmann S,Klein J,Nettesheim K,Saedler H,Huijser P. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene,1999,237(1):91−104. doi: 10.1016/S0378-1119(99)00308-X
    [8]
    Liu MY,Sun WJ,Ma ZT,Huang L,Wu Q,et al. Genome-wide identification of the SPL gene family in tartary buckwheat(Fagopyrum tataricum)and expression analysis during fruit development stages[J]. BMC Plant Biol,2019,19(1):299. doi: 10.1186/s12870-019-1916-6
    [9]
    He BY,Gao SZ,Lu H,Yan JL,Li CH,et al. Genome-wide analysis and molecular dissection of the SPL gene family in Fraxinus mandshurica[J]. BMC Plant Biol,2022,22(1):451. doi: 10.1186/s12870-022-03838-9
    [10]
    Li J,Fan R,Wu BD,Ji XZ,Hao CY. Genome-wide identification and functional exploration of SBP-Box gene family in black pepper(Piper nigrum L.)[J]. Genes,2021,12(11):1740. doi: 10.3390/genes12111740
    [11]
    Riese M,Höhmann S,Saedler H,Münster T,Huijser P. Comparative analysis of the SBP-box gene families in P. patens and seed plants[J]. Gene,2007,401(1-2):28−37. doi: 10.1016/j.gene.2007.06.018
    [12]
    Li J,Gao XY,Zhang X,Liu CN. Dynamic expansion and functional evolutionary profiles of plant conservative gene family SBP-box in twenty two flowering plants and the origin of miR156[J]. Biomolecules,2020,10(5):757. doi: 10.3390/biom10050757
    [13]
    Rogers K,Chen XM. Biogenesis,turnover,and mode of action of plant microRNAs[J]. Plant Cell,2013,25(7):2383−2399. doi: 10.1105/tpc.113.113159
    [14]
    Voinnet O. Origin,biogenesis,and activity of plant microRNAs[J]. Cell,2009,136(4):669−687. doi: 10.1016/j.cell.2009.01.046
    [15]
    Yang J,Guo ZL,Wang WT,Cao XY,Yang XZ. Genome-wide characterization of SPL gene family in Codonopsis pilosula reveals the functions of CpSPL2 and CpSPL10 in promoting the accumulation of secondary metabolites and growth of C. pilosula hairy root[J]. Genes,2021,12(10):1588. doi: 10.3390/genes12101588
    [16]
    Klein J,Saedler H,Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Mol Genet Genom,1996,250(1):7−16.
    [17]
    Xu ML,Hu TQ,Zhao JF,Park MY,Earley KW,et al. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana[J]. PLoS Genet,2016,12(8):e1006263. doi: 10.1371/journal.pgen.1006263
    [18]
    Xie KB,Wu CQ,Xiong LZ. Genomic organization,differential expression,and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice[J]. Plant Physiol,2006,142(1):280−293. doi: 10.1104/pp.106.084475
    [19]
    Tripathi RK,Goel R,Kumari S,Dahuja A. Genomic organization,phylogenetic comparison,and expression profiles of the SPL family genes and their regulation in soybean[J]. Dev Genes Evol,2017,227(2):101−119. doi: 10.1007/s00427-017-0574-7
    [20]
    Tong T,Fang YX,Zhang ZL,Zheng JJ,Lu XL,et al. Genome-wide identification,phylogenetic and expression analysis of SBP-box gene family in barley(Hordeum vulgare L.)[J]. Plant Growth Regul,2020,90(1):137−149. doi: 10.1007/s10725-019-00559-2
    [21]
    Guo Q,Li L,Zhao K,Yao WJ,Cheng ZH,et al. Genome-wide analysis of poplar SQUAMOSA-promoter-binding protein (SBP) family under salt stress[J]. Forests,2021,12(4):413. doi: 10.3390/f12040413
    [22]
    Lal S,Pacis LB,Smith HM. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis[J]. Mol Plant,2011,4(6):1123−1132. doi: 10.1093/mp/ssr041
    [23]
    Liu YH,Aslam M,Yao LA,Zhang M,Wang LL,et al. Genomic analysis of SBP gene family in Saccharum spontaneum reveals their association with vegetative and reproductive development[J]. BMC Genomics,2021,22(1):767. doi: 10.1186/s12864-021-08090-3
    [24]
    Unte US,Sorensen AM,Pesaresi P,Gandikota M,Leister D, et al. SPL8,an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell,2003,15(4):1009−1019.
    [25]
    Zhou LX,Yarra R. Genome-wide analysis of SPL/miR156 module and Its expression analysis in vegetative and reproductive organs of oil palm(Elaeis guineensis)[J]. Int J Mol Sci,2023,24(17):13658. doi: 10.3390/ijms241713658
    [26]
    Kim JJ,Lee JH,Kim W,Jung HS,Huijser P,et al. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiol,2012,159(1):461−478. doi: 10.1104/pp.111.192369
    [27]
    Cui L,Zheng FY,Wang JF,Zhang CL,Xiao FM,et al. miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato[J]. Plant Biotechnol J,2020,18(8):1670−1682. doi: 10.1111/pbi.13331
    [28]
    Zhang B,Xu WN,Liu X,Mao XG,Li A,et al. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21,two SBP-box genes governing yield-related traits in hexaploid wheat[J]. Plant Physiol,2017,174(2):1177−1191. doi: 10.1104/pp.17.00113
    [29]
    Chen HG,Zeng XL,Yang J,Cai X,Shi YM,et al. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution[J]. Hortic Res,2021,8(1):98. doi: 10.1038/s41438-021-00531-0
    [30]
    Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol,2016,33(7):1870−1874. doi: 10.1093/molbev/msw054
    [31]
    Li CL,Lu SF. Molecular characterization of the SPL gene family in Populus trichocarpa[J]. BMC Plant Biol,2014,14(1):131. doi: 10.1186/1471-2229-14-131
    [32]
    Li J,Hou HM,Li XQ,Xiang J,Yin XJ,et al. Genome-wide identification and analysis of the SBP-box family genes in apple(Malus×domestica Borkh.)[J]. Plant Physiol Biochem,2013,70:100−114. doi: 10.1016/j.plaphy.2013.05.021
    [33]
    Zhou Q,Zhang SS,Chen F,Liu BJ,Wu L,et al. Genome-wide identification and characterization of the SBP-box gene family in Petunia[J]. BMC Genomics,2018,19(1):193. doi: 10.1186/s12864-018-4537-9
    [34]
    Xu ZD,Sun LD,Zhou YZ,Yang WR,Cheng TR,et al. Identification and expression analysis of the SQUAMOSA promoter-binding protein(SBP)-box gene family in Prunus mume[J]. Mol Genet Genom,2015,290(5):1701−1715. doi: 10.1007/s00438-015-1029-3
    [35]
    Song S,Zhou HY,Sheng SB,Cao M,Li YY,Pang XM. Genome-wide organization and expression profiling of the SBP-box gene family in Chinese jujube(Ziziphus jujuba Mill.)[J]. Int J Mol Sci,2017,18(8):1734. doi: 10.3390/ijms18081734
    [36]
    Lännenpää M,Jänönen I,Hölttä-Vuori M,Gardemeister M,Porali I,Sopanen T. A new SBP-box gene BpSPL1 in silver birch(Betula pendula)[J]. Physiol Plant,2004,120(3):491−500. doi: 10.1111/j.0031-9317.2004.00254.x
    [37]
    Hanly A,Karagiannis J,Lu QSM,Tian LN,Hannoufa A. Characterization of the role of SPL9 in drought stress tolerance in Medicago sativa[J]. Int J Mol Sci,2020,21(17):6003. doi: 10.3390/ijms21176003
    [38]
    Salinas M,Xing SP,Höhmann S,Berndtgen R,Huijser P. Genomic organization,phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J]. Planta,2012,235(6):1171−1184. doi: 10.1007/s00425-011-1565-y
    [39]
    Wang ZS,Wang Y,Kohalmi SE,Amyot L,Hannoufa A. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2 controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana[J]. Plant Mol Biol,2016,92(6):661−674. doi: 10.1007/s11103-016-0536-x
  • Related Articles

    [1]Liu Hongrui, Yan Baoxu, Zhao Yi, Yan Ruoyu, Jiang Kun. Advances in studies of ion channels and transporters involved in stomatal ABA signaling[J]. Plant Science Journal, 2024, 42(4): 543-554. DOI: 10.11913/PSJ.2095-0837.23277
    [2]Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690
    [3]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [4]LI Kun, WANG Xian-Ping, YANG Feng-Bo, XU Shou-Ming. Roles of Mitogen-activated Protein Kinase Cascades in ABA Signaling Regulation of Plant Development[J]. Plant Science Journal, 2014, 32(5): 531-539. DOI: 10.11913/PSJ.2095-0837.2014.50531
    [5]SUN Xin, LEI Tao, YUAN Shu, LIN Hong-Hui. Progress in Research of Dehydrins[J]. Plant Science Journal, 2005, 23(3): 299-304.
    [6]ZHANG Yi-Lin, ZHAO Fan, ZHAO Jie. Effects of Exogenous ABA on the Seed Germination of Rice (Oryza sativa L.) and the Expression of Relative Genes[J]. Plant Science Journal, 2005, 23(3): 203-210.
    [7]LI Ke-Ying, LI Jia-Ru. The Effects of Salicylic Acid on Lateral Roots Formation in Rape Seedlings[J]. Plant Science Journal, 2004, 22(4): 345-348.
    [8]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [9]Peng Yanhua, Liu Chengyun, Lu Dayan, Ye Wancheng. RESPONSE OF WATER HYACINTH LEAVES TO LOW TEMPERATURE STRESS——INCREASE IN ABSCISIC ACID AND SOLUBLE PROTEIN CONCENTRATIONS[J]. Plant Science Journal, 1992, 10(2): 123-127.
    [10]Peng Yanhua, Liu Chengyun. RECENT ADVANCES IN RELATION BETWEEN ABA AND EMBRYOGENESIS AND THE MODE OF ABA ACTION[J]. Plant Science Journal, 1991, 9(3): 289-292.
  • Other Related Supplements

Catalog

    Article views (77) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return