Citation: | Hou FX,Cai QR,Zhao ST,Fan XR,Zhu HY,Yuan LY,Chen YY. Comparison of the structure and photosynthetic characteristics of different photosynthetic organs in Trapa quadrispinosa Roxb.[J]. Plant Science Journal,2024,42(6):782−790. DOI: 10.11913/PSJ.2095-0837.23392 |
The genus Trapa possesses three distinct photosynthetic organs, including submerged leaves, floating leaves, and adventitious roots. In this study, we compared the anatomical structures and photosynthetic characteristics of these organs at different growth stages of Trapa quadrispinosa Roxb. Results showed that: (1) Submerged leaves exhibited a simpler structure compared to the bifacial anatomy of floating leaves; (2) Adventitious roots at both the juvenile and mature stages retained typical root structures and evident chloroplasts; (3) Significant differences were observed in chloroplast size and morphology among submerged leaves, floating leaves, and adventitious roots; (4) Floating leaves contained significantly higher levels of chlorophyll a (Chla), carotenoid (Car), and total chlorophyll (Chls) compared to other organs, while juvenile adventitious roots and floating leaves exhibited higher chlorophyll b content (Chlb); (5) Floating leaves demonstrated superior photosynthetic efficiency, with higher maximum photochemical quantum yield (Fv/Fm), actual photochemical quantum yield (YⅡ), and photochemical quenching (qP) compared to the other organs. (6) Based on oxygen exchange rates, the order of the four photosynthetic organs from high to low was juvenile adventitious roots>submerged leaves>floating leaves>mature adventitious roots. Overall, during the seedling stage, photosynthetic capacity was higher in adventitious roots than in submerged leaves. In contrast, during the adult stage, floating leaves surpassed adventitious roots in photosynthetic capacity.
[1] |
Li GJ,Hu SQ,Hou HW,Kimura S. Heterophylly:phenotypic plasticity of leaf shape in aquatic and amphibious plants[J]. Plants,2019,8(10):420. doi: 10.3390/plants8100420
|
[2] |
Wang SN,Li PP,Liao ZY,Wang WW,Chen T,et al. Adaptation of inorganic carbon utilization strategies in submerged and floating leaves of heteroblastic plant Ottelia cordata[J]. Environ Exp Bot,2022,196:104818. doi: 10.1016/j.envexpbot.2022.104818
|
[3] |
金泉,李鹏鹏,张瑞花,尹黎燕. 水菜花异形叶片叶绿素荧光特征与HCO3-利用能力的研究[J]. 植物科学学报,2019,37(5):637−643.
Jin Q,Li PP,Zhang RH,Yin LY. Chlorophyll fluorescence characteristics and HCO3- utilization capability of heteromorphic leaves of Ottelia cordata[J]. Plant Science Journal,2019,37(5):637−643.
|
[4] |
卫沙沙,李鹏鹏,袁龙义,李伟,江红生. 叶异形水生植物不同发育阶段叶片的结构和无机碳获取策略[J]. 植物科学学报,2022,40(4):544−552.
Wei SS,Li PP,Yuan LY,Li W,Jiang HS. Leaf structure and inorganic carbon acquisition strategies of heteroblastic aquatic plants at different stages of development[J]. Plant Science Journal,2022,40(4):544−552.
|
[5] |
万文豪. 中国菱科植物分类研究[J]. 南昌大学学报(理科版),1984,8(2):71−78.
|
[6] |
丁炳杨,李平,方云亿. 菱属植物沉水叶和不定根的观察[J]. 植物学报,1988(3):140−142.
|
[7] |
陆昌燕,刘体育,郑兴峰. 四角菱根系的发育和功能[J]. 安徽农业科学,2011,39(8):4416−4417.
Lu CY,Liu TY,Zheng XF. Development and function of root system of Trapa quadrispinosa Roxb.[J]. Journal of Anhui Agricultural Sciences,2011,39(8):4416−4417.
|
[8] |
曾宪锋,周仪. 关于菱的沉水茎上不定根的探讨[J]. 生物学通报,1996(9):28.
|
[9] |
Nedukha OM. Anatomical structure of Trapa natans L. submerged organs in context of the species ecology[J]. Mod Phytomorphol,2015,8:153−160.
|
[10] |
Arima S,Tanaka N,Kubota F. Growth and photosynthetic rate of water roots of water chestnut (Trapa bispinosa Roxb.)[J]. Bull Fac Agric,Saga Univ,1988(64):27−35.
|
[11] |
王婉婉,陆镇威,袁龙义,江红生. 纳米银对紫萍休眠芽萌发、存活和生长的影响[J]. 植物科学学报,2022,40(4):576−583.
Wang WW,Lu ZW,Yuan LY,Jiang HS. Effects of silver nanoparticles on dormant bud germination,seedling survival,and growth of Spirodela polyrhiza (L.) Schleid[J]. Plant Science Journal,2022,40(4):576−583.
|
[12] |
王婉婉. 纳米银对水生植物紫萍光合作用毒性效应及作用机制[D]. 荆州:长江大学,2022:15.
|
[13] |
Li PP,Liao ZY,Zhou JZ,Yin LY,Jiang HS,Li W. Bicarbonate-use by aquatic macrophytes allows a reduction in photorespiration at low CO2 concentrations[J]. Environ Exp Bot,2021,188:104520. doi: 10.1016/j.envexpbot.2021.104520
|
[14] |
王德华. 水生植物的定义与适应[J]. 生物学通报,1994,29(6):10.
|
[15] |
王晨,李龙,倪细炉,李健. 穿叶眼子菜茎叶结构及其通气组织发育解剖学研究[J]. 西北植物学报,2018,38(7):1279−1287.
Wang C,Li L,Ni XL,Li J. Study on the developmental anatomy of structures and aerenchyma formation in Potamogeton perfoliatus stems and leaves[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(7):1279−1287.
|
[16] |
罗玉明,丁小余,杨晋彬,施国新. 菱的腺毛发育及分泌活动的超微结构研究[J]. 广西植物,2006,26(4):352−355.
Luo YM,Ding XY,Yang JB,Shi GX. Studies on the development of glandular hairs in Trapa bispinosa and the ultrastructure during their secretory activity[J]. Guihaia,2006,26(4):352−355.
|
[17] |
杨宽. 6种睡莲叶片解剖结构及耐寒性评价[J]. 分子植物育种,2021,19(20):6910−6917.
Yang K. Leaf anatomic structure and cold tolerance evaluation of 6 Nymphaea varieties[J]. Molecular Plant Breeding,2021,19(20):6910−6917.
|
[18] |
Kordyum E,Mosyakin S,Ivanenko G,Ovcharenko Y,Brykov V. Hydropotes of young and mature leaves in Nuphar lutea and Nymphaea alba (Nymphaeaceae):formation,functions and phylogeny[J]. Aquat Bot,2021,169:103342. doi: 10.1016/j.aquabot.2020.103342
|
[19] |
汪攀,陈奶莲,邹显花,马祥庆,吴鹏飞. 植物根系解剖结构对逆境胁迫响应的研究进展[J]. 生态学杂志,2015,34(2):550−556.
Wang P,Chen NL,Zou XH,Ma XQ,Wu PF. Research progress on adaptive responses of anatomical structure of plant roots to stress[J]. Chinese Journal of Ecology,2015,34(2):550−556.
|
[20] |
Rich SM,Ludwig M,Colmer TD. Photosynthesis in aquatic adventitious roots of the halophytic stem-succulent Tecticornia pergranulata (formerly Halosarcia pergranulata)[J]. Plant Cell Environ,2008,31(7):1007−1016. doi: 10.1111/j.1365-3040.2008.01813.x
|
[21] |
高佳,崔海岩,史建国,董树亭,刘鹏,等. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响[J]. 应用生态学报,2018,29(3):883−890.
Gao J,Cui HY,Shi JG,Dong ST,Liu P,et al. Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L.)[J]. Chinese Journal of Applied Ecology,2018,29(3):883−890.
|
[22] |
李晨,刘建廷,樊永信,赵雪惠,肖伟,等. UV-B对设施桃叶片光合功能及叶绿体超微结构的影响[J]. 植物学报,2022,57(4):434−443.
Li C,Liu JT,Fan YX,Zhao XH,Xiao W,et al. Effects of UV-B on photosynthetic function and chloroplast ultrastructure of peach leaves grown in greenhouse[J]. Chinese Bulletin of Botany,2022,57(4):434−443.
|
[23] |
袁秀云,许申平,周一冉,王喜蒙,崔波. 遮荫对白及形态及叶片结构的影响[J]. 植物研究,2021,41(6):974−981.
Yuan XY,Xu SP,Zhou YR,Wang XM,Cui B. Shading effect on morphology and leaf structure of Bletilla striata[J]. Bulletin of Botanical Research,2021,41(6):974−981.
|
[24] |
聂小英,朱春晓,郑东升,陈阳峰,李自强,肖深根. 遮光处理对草珊瑚光合特性及叶片解剖结构的影响[J]. 西北植物学报,2021,41(6):995−1002.
Nie XY,Zhu CX,Zheng DS,Chen YF,Li ZQ,Xiao SG. Effects of shading treatment on photosynthetic characteristics and leaf anatomical structure of Sarcandra glabra[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(6):995−1002.
|
[25] |
陈德兴,王天铎. 叶片叶肉结构对环境光强的适应及对光合作用的影响[J]. 应用生态学报,1990,1(2):142−148.
Chen DX,Wang TD. Adaptation of leaf mesophyll structure to environmental light condition and its effect on leaf photosynthesis[J]. Chinese Journal of Applied Ecology,1990,1(2):142−148.
|
[26] |
孙小玲,许岳飞,马鲁沂,周禾. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报,2010,34(8):989−999.
Sun XL,Xu YF,Ma LY,Zhou H. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment[J]. Chinese Journal of Plant Ecology,2010,34(8):989−999.
|
[27] |
Lichtenthaler HK,Ač A,Marek MV,Kalina J,Urban O. Differences in pigment composition,photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species[J]. Plant Physiol Biochem,2007,45(8):577−588. doi: 10.1016/j.plaphy.2007.04.006
|
[28] |
李焰焰,张紫薇,黄薇,聂传朋. 马缨丹光合色素及叶绿素荧光参数分析[J]. 生物学杂志,2022,39(2):29−33.
Li YY,Zhang ZW,Huang W,Nie CP. Leaf structure and chlorophyll fluorescence of Lantana camara[J]. Journal of Biology,2022,39(2):29−33.
|
[29] |
Björkman O,Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta,1987,170(4):489−504. doi: 10.1007/BF00402983
|
[30] |
高丽楠. 九寨沟2种沉水植物叶绿素荧光特性比较[J]. 浙江农业学报,2017,29(6):951−958.
Gao LN. Comparison of chlorophyll fluorescence characteristics between two submerged macrophytes in Jiuzhaigou National Nature Reserve[J]. Acta Agriculturae Zhejiangensis,2017,29(6):951−958.
|
[31] |
周哲宇,徐超,胡策,王海湘,梁谢恩,等. 毛竹快速生长期的叶绿素荧光参数特征[J]. 浙江农林大学学报,2018,35(1):75−80.
Zhou ZY,Xu C,Hu C,Wang HX,Liang XE,et al. Chlorophyll fluorescence characteristics of Phyllostachys edulis during its fast growth period[J]. Journal of Zhejiang A& F University,2018,35(1):75−80.
|
[32] |
宋玉芝,蔡炜,秦伯强. 太湖常见浮叶植物和沉水植物的光合荧光特性比较[J]. 应用生态学报,2009,20(3):569−573.
Song YZ,Cai W,Qin BQ. Photosynthetic fluorescence characteristics of floating-leaved and submersed macrophytes commonly found in Taihu Lake[J]. Chinese Journal of Applied Ecology,2009,20(3):569−573.
|
[33] |
刘少华,陈国祥,杨艳华,王娜,施国新,吴国荣. 菱异形叶光合特性的比较[J]. 南京师大学报(自然科学版),2002,25(1):78−82.
Liu SH,Chen GX,Yang YH,Wang N,Shi GX,Wu GR. A comparative study on photosynthetic activity of heteromorphous leaf from Trapa bispinosa R.[J]. Journal of Nanjing Normal University (Natural Science Edition),2002,25(1):78−82.
|
[34] |
Gao SJ,Chen SS,Li MQ. Rapid post-illumination oxygen consumption and its relation to photorespiration[J]. Acta Phytophysiologica Sinica,1988,14(4):313−317.
|
[35] |
张依南,张蔚,田昆,孙梅,戴强,等. 不同水位下莼菜叶片气孔及光合特性的相关性分析[J]. 西南林业大学学报(自然科学),2019,39(5):35−42.
Zhang YN,Zhang W,Tian K,Sun M,Dai Q,et al. Correlation analysis of stomatal and photosynthetic characteristics of Brasenia schreberi leaves under different water levels[J]. Journal of Southwest Forestry University (Natural Sciences),2019,39(5):35−42.
|
[1] | Xin Jia, Sun Heng, Liu Juan, Yang Dong, Deng Xian-Bao, Yang Mei. Advances in the identification, function, and application of flavonoids in Nelumbo[J]. Plant Science Journal, 2023, 41(3): 400-410. DOI: 10.11913/PSJ.2095-0837.22194 |
[2] | LIANG Jia-Wen, LIU Ai-Jie, MA Bing-Xin, WANG You-Wei. Simultaneous Determination of Six Flavonoid Compounds in Lotus Leaves by High Performance Liquid Chromatography[J]. Plant Science Journal, 2015, 33(6): 861-866. DOI: 10.11913/PSJ.2095-0837.2015.60861 |
[3] | WANG Ying-Li, HUANG Wen-Jun, WANG Ying. Cloning and Expression Analysis of the EsUF3GT Gene in Epimedium sagittatum (Sieb. and Zucc.) Maxim.[J]. Plant Science Journal, 2014, 32(6): 602-611. DOI: 10.11913/PSJ.2095-0837.2014.60602 |
[4] | GAO Xiang, ZHANG Hua-Feng, LU Da-Yan, WANG Ying. The Relationship between the Contents of Flavonoids and Leaf Morphology in Epimedium Species[J]. Plant Science Journal, 2009, 27(2): 184-187. |
[5] | ZHANG Jin-Yu, QIU Zong-Bo, WANG Xun-Ling, YUE Ming. Effect of He-Ne Laser Radiation on Component,Content of the Flavonoids and Growth Parameters in Beta vulgaris under Enhanced UV-B Radiation[J]. Plant Science Journal, 2008, 26(3): 304-309. |
[6] | BAI Jie, WANG Dong-Mei, YANG De-Po. Analysis of the Chemical Constituents of Hypericum hubeiense by HPLC/DAD/ESI-MS[J]. Plant Science Journal, 2008, 26(1): 87-90. |
[7] | MA Jin-E, JIN Ze-Xin, LI Jun-Min. Analysis of Flavonoids in Endangered Plant Sinocalycanthus chinensis Using Thin Layer Chromatography[J]. Plant Science Journal, 2007, 25(4): 366-370. |
[8] | SI Ying, WANG Wei, GONG Fu-Jun, DING Shi-Dong, WANG You-Wei. Study on the Total Flavonoids Content in Leaves of Glyptostrobus pensilis[J]. Plant Science Journal, 2003, 21(6): 547-549. |
[9] | LI Jun-Min, CHEN Yong-Hui, JIN Ze-Xin, ZHONG Zhang-Cheng. Extraction and Analysis of Flavonoids from Sargentodoxa Cuneata[J]. Plant Science Journal, 2002, 20(2): 157-161. |
[10] | Zhou Tongshui. THE FLAVONOIDS OF PTERIDOPHYTA AND THEIR SYSTEMATIC SIGNIFICANCE[J]. Plant Science Journal, 1989, 7(4): 377-389. |