Advance Search
XU Zhang-Hua, LIU Jian, YU Kun-Yong, GONG Cong-Hong, TANG Meng-Ya, XIE Wan-Jun, LAI Ri-Wen, LI Zeng-Lu. Response of Pinus massoniana Leaf Area Index (LAI) to Climate Indicators in Fujian Province[J]. Plant Science Journal, 2013, 31(2): 114-123. DOI: 10.3724/SP.J.1142.2013.20114
Citation: XU Zhang-Hua, LIU Jian, YU Kun-Yong, GONG Cong-Hong, TANG Meng-Ya, XIE Wan-Jun, LAI Ri-Wen, LI Zeng-Lu. Response of Pinus massoniana Leaf Area Index (LAI) to Climate Indicators in Fujian Province[J]. Plant Science Journal, 2013, 31(2): 114-123. DOI: 10.3724/SP.J.1142.2013.20114

Response of Pinus massoniana Leaf Area Index (LAI) to Climate Indicators in Fujian Province

More Information
  • Received Date: August 19, 2012
  • Revised Date: January 12, 2013
  • Published Date: April 29, 2013
  • To understand spatial and temporal distribution regularity of Pinus massoniana, we used leaf area index (LAI) to achieve Dendrolimus punctatus Walker damage spatial monitoring and early warning. We used six climate indicators, namely average temperature, average temperature anomalies, precipitation, precipitation anomalies, sunshine hours and sunshine hour anomalies measured from 38 climate stations in 2010 in Fujian Province and 90 field measured LAI, and analysed the response of P. massoniana LAI to the climate from provincial and city scales, respectively. Results showed that: (1) in addition to sunshine anomalies, the other five climate indicators significantly influenced P. massoniana LAI in the order average temperature > precipitation > sunshine hours > average temperature anomalies > precipitation anomalies with the coefficients; (2) seen from the provincial scale, the response of P. massoniana LAI to average temperature presented as an open side down parabola, and the response to average anomalies was explained by a cubic curve; the response of LAI to precipitation was negative and the influence of precipitation anomalies was similar to average temperature, while response to sunshine hours presented as an open side upward parabola; (3) seen from the prefecture-level city scale, the LAI of Nanping, Sanming, and Longyan, the main producing areas of P. massoniana in Fujian, were generally lower than that in non- or low-producing coastal areas, with the LAI of Nanping being the lowest. On one hand, why the LAI of Nanping, Sanming, and Longyan being lower than other areas was because of the direct response of P. massoniana LAI to climate indicators, and on the other hand, by the impact of climate on the distribution of Dendrolimus punctatus Walker, LAI showed the spatial characteristics of coastal high and inland low.
  • [1]
    Chen J M, Black T A. Define leaf area index for non-flat leaves[J].Plant Cell Environ, 1992, 15(4): 421-429.
    [2]
    Pocock M J O, Evans D M, Memmott J. The impact of farm management on species-specific leaf area index (LAI): Farm-scale data and predictive models[J]. Agric Ecosyst Environ, 2010, 135 (4): 279-287.
    [3]
    Poulter B, Heyder U, Cramer W. Modeling the sensitivity of the seasonal cycle of GPP to dynamic LAI and soil depths in tropical rainforests[J]. Ecosystems, 2009, 12(4): 517-533.
    [4]
    Tokar F, Krekulova E. Structure, quality, production, LAI and dendrochronology of 100 years old Austrian pine (Pinus nigra ARNOLD) stand[J]. J For Sci (Prague), 2005, 51(2): 67-76.
    [5]
    Brut A,Rudiger C, Lafont S, et al. Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France[J]. Biogeosciences, 2009, 6(8): 1389-1404.
    [6]
    Dermody O, Weltzin, J F, Engel E C,et al. How do elevated CO2, warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem?[J]. Plant Soil, 2007, 301(1-2): 255-266.
    [7]
    张佳华, 符淙斌, 延晓冬, 等. 全球植被叶面积指数对温度和降水的响应研究[J]. 地球物理学报, 2002, 45(5): 631-637.
    [8]
    王凤敏, 田庆久. 植被MODIS-LAI的温度降水响应[J]. 遥感信息, 2006(2): 34-37, 45.
    [9]
    罗宇翔, 向红琼, 郑小波, 等. MODIS植被叶面积指数对贵州高原山地气象条件的响应[J]. 生态环境学报, 2011, 20(1): 19-23.
    [10]
    丹利, 季劲钧, 马柱国. 新疆植被生产力与叶面积指数的变化及其对气候的响应[J]. 生态学报,2007, 27(9): 3582-3592.
    [11]
    梁妙玲, 谢正辉. 我国气候对植被分布和净初级生产力影响的数值模拟[J]. 气候与环境研究, 2006, 11(5): 582-592.
    [12]
    谢舒菁, 李秀平, 刘健, 等. 马尾松毛虫害林分失叶量估测研究[J]. 三明学院学报, 2010, 27(6): 558-564.
    [13]
    Asa E, Saafi M, Membah J,et al. Comparison of linear and nonlinear Kriging methods for characterization and interpolation of soil data[J]. J Comput Civil Engin, 2012, 26(1): 11-18.
    [14]
    王勇, 李朝奎, 陈良, 等. 权重对空间插值方法的影响分析[J]. 湖南科技大学学报:自然科学版, 2008, 23(4): 77-80.
    [15]
    Deng X S, Tang Z A.Moving surface spline interpolation based on Green's function[J]. Math Geosci, 2011, 43(6): 663-680.
    [16]
    Allasia G, Cavoretto R, De R A. A class of spline functions for landmark-based image registration[J]. Math Methods Appl Sci, 2012, 35(8): 923-934.
    [17]
    张容焱, 邓自旺, 沈新勇, 等. 福建春雨多时空尺度变化特征[J]. 南京气象学院学报, 2009, 32(1): 121-127.
    [18]
    程瑞梅, 封晓辉, 肖文发, 等. 北亚热带马尾松净生产力对气候变化的响应[J]. 生态学报, 2011, 31(8): 2086-2095.
    [19]
    黄向东. 湖南省山区马尾松毛虫发生规律和可持续控制的研究. 长沙: 中南林业科技大学, 2003.
    [20]
    朱建华, 陈顺立, 张再福. 森林病虫害预测预报[M]. 厦门: 厦门大学出版社, 2002: 160.

Catalog

    Article views (1361) PDF downloads (1542) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return