Advance Search
XU Dong-Ping, LIU Yong-Ming, WANG Jing, LIU Jing-Hui, CAO Mo-Ju. The Photosynthesis Characteristics Analysis on a Yellow Green Maize[J]. Plant Science Journal, 2014, 32(1): 67-73. DOI: 10.3724/SP.J.1142.2014.10067
Citation: XU Dong-Ping, LIU Yong-Ming, WANG Jing, LIU Jing-Hui, CAO Mo-Ju. The Photosynthesis Characteristics Analysis on a Yellow Green Maize[J]. Plant Science Journal, 2014, 32(1): 67-73. DOI: 10.3724/SP.J.1142.2014.10067

The Photosynthesis Characteristics Analysis on a Yellow Green Maize

More Information
  • Received Date: July 21, 2013
  • Revised Date: October 14, 2013
  • Available Online: November 01, 2022
  • Published Date: February 27, 2014
  • Photosynthetic characteristics,light-response curve and fluorescence kinetic parameters were measured for the yellow green maize of Zea mays L.and two normal inbred maize lines Mo17 and RP128 by a portable photosynthetic analyzer LI-6400 and Pulse-Amplitude-Modulation Chlorophyll Fluorometer.Results showed that the net photosynthetic rate(Pn),stomatal conductance(Gs)and intercellular CO2 concentration(Ci)for yellow green maize yglm1 were significantly lower than the normal inbred lines Mo17 and RP128,but the transpiration rate(Tr)was significantly higher.The photosynthesis-light response curve indicated that light compensation point,light saturation point,dark respiration rate and apparent quantum efficiency for yellow green maize were higher than normal inbred lines Mo17 and RP128.Measurement of fluorescence kinetics parameters showed that initial fluorescence(Fo),maximal fluorescence(Fm),primary light energy conversion of PSⅡ(Fv/Fm),efficiency of light energy capture by PSⅡ(Fv'/Fm'),actually photochemical efficiency of PSⅡ with light(ΦPSⅡ),and photochemical quenching coefficient(qP)for yellow green maize were significantly lower than normal inbred lines Mo17 and RP128,but non-photochemical quenching coefficient(qN)was significantly higher.Yellow green maize had lower photosynthetic rate than Mo17 and RP128,which may be related to their lower electron transfer potential,lower light capture efficiency and transformation efficiency,and lower energy allocation and utilization.
  • [1]
    Wu ZM,Zhang X,He B,Diao LP,Sheng SL,Wang JL,Guo XP,Su N,Wang LF,Jiang L,Wang CM,Zhai HQ,Wan JM.A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J].Plant Physiology,2007,145:29-40.
    [2]
    Wang PR,Gao JX,Wan CM,Zhang FT,Xu ZJ,Huang XQ,Sun XQ,Deng XJ.Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice[J].Plant Physiology,2010,153:994-1003.
    [3]
    Wang PR,Wan CM,Xu ZJ,Wang PY,Wang WM,Sun CH,Ma XZ,Xiao YH,Zhu JQ,Gao XL,Deng XJ.One divinyl reductase reduces the 8-vinyl groups in various intermediates of chlorophyll biosynthesis in a given higher plant species,but the isozyme differs between species[J].Plant Physiology,2013,161:521-534.
    [4]
    Cahoon AB,Takacs EM,Sharpe RM,Stern DB.Nuclear,chloroplast,and mitochondrial transcript abundance along a maize leaf developmental gradient[J].Plant Mol Biol,2008,66:33-46.
    [5]
    Slewinski TL,Baker RF,Stubert A,Braun DM.Tie-dyed2 Encodes a Callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves[J].Plant Physiology,2012,160:1540-1550.
    [6]
    程红亮,陈甲法,丁俊强,吴建宇.一个玉米叶色突变体的遗传分析与基因定位[J].华北农学报,2011,26(3):7-10.
    [7]
    Rudoi AB,Shcherbakov RA.Analysis of the chlorophyll biosynthetic system in a chlorophyll b-less barley mutant[J].Photosynthesis Research,1998,58:71-80.
    [8]
    Marco GD,Ambrosio ND,Giardi MT,Massacci A,Tricoli D.Photosynthetic properties of leaves of a yellow green mutant of wheat compared to its wild type[J].Photosynthesis Research,1989,21:117-122.
    [9]
    姚建刚,张贺,许向阳,张丽莉,李景富.番茄叶色突变体的弱光耐受性研究[J].中国蔬菜,2010(4):31-35.
    [10]
    黄晓群.一份新的水稻黄化突变体的遗传分析及基因定位[D].成都:四川农业大学,2006.
    [11]
    龚红兵,陈亮明,习立平,盛生兰,林添资,杨图南,张荣铣,曹树青,翟虎渠,戴新宾,陆巍,许晓明.水稻叶绿素b减少突变体的遗传分析及其相关特性[J].中国农业科学,2001,34(6):686-689.
    [12]
    王聪田,王国槐,青先国,李必湖,郭清泉,宋克堡,匡晓东.水稻淡黄叶突变体安农标810S的光合特性初探[J].杂交水稻,2008,23(1):64-67.
    [13]
    戴新宾,曹树青,许晓明,陆魏,张荣铣,许长成,陈耀东,匡廷云.低叶绿素b高产水稻突变体及其光合特性的研究[J].植物学报,2000,42(12):1289-1294.
    [14]
    张荣铣,许晓明,戴新宾,陆魏,曹树青.叶绿素b含量低的水稻突变体的光合功能衰退及其与活性氧的关系[J].植物生理与分子生物学学报,2003,29(2):104-108.
    [15]
    许晓明,张荣铣,唐运来.低叶绿素含量对突变体水稻吸收光能分配特性的影响[J].中国农业科学,2004,37(3):339-343.
    [16]
    张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [17]
    徐冬平,汪瀚宇,张采波,荣廷昭,曹墨菊.一个新的玉米黄化突变体的初步研究[J].核农学报,2012,26(7):988-993.
  • Related Articles

    [1]Lu Yu, Cui Sha-Sha, Li Wen-Yang, Liu Gui-Hua, Zhou Wen. Dynamic characteristics of litter decomposition and nutrient release of three common emergent plants[J]. Plant Science Journal, 2023, 41(1): 17-25. DOI: 10.11913/PSJ.2095-0837.22150
    [2]Chen Mei-Yan, Zhao Ting-Ting, Peng Jue, Zhang Peng, Han Fei, Liu Xiao-Li, Zhong Cai-Hong. Multivariate analysis of relationship between soil nutrients and fruit quality in ‘Donghong’ kiwifruit (Actinidia chinensis var. chinensis) orchards[J]. Plant Science Journal, 2021, 39(2): 193-200. DOI: 10.11913/PSJ.2095-0837.2021.20193
    [3]He Chun-Mei, Zhang Zhao-Hui, Wang Zhi-Hui, Shi Kuang-Zheng. Water retention characteristics of Sphagnum and their relationship with soil nutrient content in the peatland of Maruo,Upland Guizhou[J]. Plant Science Journal, 2020, 38(5): 618-626. DOI: 10.11913/PSJ.2095-0837.2020.50618
    [4]Li Yong-Heng, Li Qian-Xi, Wu Jun-Jun, Cheng Xiao-Li. Soil microbial attributes at different spatial scales in deciduous broad-leaved forest in Qinling Mountains[J]. Plant Science Journal, 2020, 38(3): 335-346. DOI: 10.11913/PSJ.2095-0837.2020.30335
    [5]Wang Qing, Liu Jian, Yu Kun-Yong. Inversion of Masson pine forest LAI by multiple-perspective vegetation index[J]. Plant Science Journal, 2017, 35(1): 48-55. DOI: 10.11913/PSJ.2095-0837.2017.10048
    [6]GAO Run-Mei, GUO Jin-Ping, GUO Yue-Dong. Characteristics of Soil Seed Bank and Tree Regenerations of Riparian Forests in the Upper Reach of Wenyuhe Watershed in Shanxi Province[J]. Plant Science Journal, 2011, 1(5): 580-588.
    [7]LI Ying, ZHONG Zhang-Cheng. Differentiation of Soil Enzyme Activities in Different Soil-Heavenly Bamboo Systems[J]. Plant Science Journal, 2006, 24(2): 144-148.
    [8]LI Qing-Yu, ZHONG Zhang-Cheng, HE Yue-Jun. Effects of Soil Nutrients on Plasticity of Floral Characteristics in Iris japonica Thunb.[J]. Plant Science Journal, 2005, 23(6): 564-567.
    [9]Wang Wenqing, Linpeng. STUDIES ON THE NUTRIENT RETRANSLOCATION EFFICIENCIES DURING LEAF SENESCENCE[J]. Plant Science Journal, 1999, 17(S1): 117-122.
    [10]An Shuqing, Wang Zhengfeng, Zhu Xuelei, Hong Bigong, Zhao Rulin. EFFECTS OF SOIL FACTORS ON SPECIES DIVERSITY IN SECONDARY FOREST COMMUNITIES[J]. Plant Science Journal, 1997, 15(2): 143-150.

Catalog

    Article views (1084) PDF downloads (1574) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return