Advance Search
WEI Guo-Chao, CHENG Jun, MA Bai-Quan, WANG Lu, GU Chao, HAN Yue-Peng. Molecular Characterization of Anthocyanin Accumulation under Different Temperatures in Winter Plant Hongcaitai (Brassica rapa L.)[J]. Plant Science Journal, 2014, 32(4): 394-405. DOI: 10.3724/SP.J.1142.2014.40394
Citation: WEI Guo-Chao, CHENG Jun, MA Bai-Quan, WANG Lu, GU Chao, HAN Yue-Peng. Molecular Characterization of Anthocyanin Accumulation under Different Temperatures in Winter Plant Hongcaitai (Brassica rapa L.)[J]. Plant Science Journal, 2014, 32(4): 394-405. DOI: 10.3724/SP.J.1142.2014.40394

Molecular Characterization of Anthocyanin Accumulation under Different Temperatures in Winter Plant Hongcaitai (Brassica rapa L.)

More Information
  • Received Date: March 16, 2014
  • Revised Date: March 26, 2014
  • Available Online: November 01, 2022
  • Published Date: August 29, 2014
  • Hongcaitai (Brassica rapa) is a vegetable that accumulates anthocyanins in both floral stems and leaf petioles. To understand the mechanism underlying the regulation of anthocyanin biosynthesis in B. rapa, anthocyanin accumulation and expression patterns of anthocyanin biosynthesis genes in seedlings of Hongcaitai were investigated. Anthocyanin content in epidermal tissues of petioles were significantly higher than those in leaves with excised mid-veins. Expression levels of all anthocyanin biosynthesis pathway genes were significantly higher in epidermal tissues of petioles than those detected in either endodermal tissues of petioles or in leaves, suggesting that anthocyanin biosynthesis was regulated at the transcriptional level. Transcripts of BrMYBA1 were exclusively expressed in the petiole epidermis; whereas, transcripts of BrbHLH1 and BrWD40 were detected in both leaves and petiole epidermal tissues. This suggests that activation of BrMYBA1 was likely responsible for anthocyanin pigmentation in Hongcaitai. Following cold treatment, seedlings demonstrated increased accumulation of anthocyanins in petiole epidermal tissues, while the transcription of anthocyanin pathway genes was reduced in petiole epidermal tissues.
  • [1]
    He J, Giusti MM. Anthocyanins: natural colorants with health-promoting properties[J]. Annu Rev Food Sci Technol, 2010(1): 163-187.
    [2]
    Grotewold E. The genetics and biochemistry of floral pigments[J]. Annu Rev Plant Biol, 2006(57): 761-780.
    [3]
    Allan AC, Hellens RP, Laing WA. MYB transcription factors that colour our fruit[J]. Trends Plant Sci, 2008, 13(3): 99-102.
    [4]
    Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids[J]. Plant J, 2008, 54(4): 733-749.
    [5]
    Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K. Effects of sugar on vegetative deve-lopment and floral transition in Arabidopsis[J]. Plant Physiol, 2001, 127(1): 252-261.
    [6]
    Steyn WJ, Wand SJE, Holcroft DM, Jacobs G. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection[J]. New Phytol, 2002, 155(3): 349-361.
    [7]
    Lin-Wang K, Micheletti D, Palmer J, Volz R, Loza-no L, Espley R, Hellens RP, Chagnè D, Rowan DD, Troggio M, Iglesias I, Allan AC. High tempera-ture reduces apple fruit colour via modulation of the anthocyanin regulatory complex[J]. Plant Cell Environ, 2011, 34(7): 1176-1190.
    [8]
    Winkler AJ, Cook JA, Kliewer WM, Lider LA. Development and composition of grapes. General viticulture[M]. Berkeley, CA: University of California Press, 1962, 141-196.
    [9]
    Layne DR, Jiang Z, Rushing JW. The influence of reflective film and retain on red skin coloration and maturity of‘Gala’apples[J]. HortTechnology, 2002, 12(4): 640-645.
    [10]
    Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M. Changes in anthocyanin concentration and composition in‘Jaguar’rose flo-wers due to transient high temperature conditions[J]. Plant Sci, 2003, 164(3): 333-340.
    [11]
    Yamane T, Jeong ST, Goto-Yamamoto N, Koshita Y, Kobayashi S. Effects of temperature on anthocyanin biosynthesis in grape berry skins[J]. Am J Enol Vitic, 2006, 57(1): 54-59.
    [12]
    Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. Loss of anthocyanins in red-wine grape under high temperature[J]. J Exp Bot, 2007, 58(8): 1935-1945.
    [13]
    Christie PJ, Alfenito MR, Walbot V. Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings[J]. Planta, 1994, 194(4): 541-549.
    [14]
    Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM. Low temperature induces the accumulation of phenylalanine ammonialyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner[J]. Plant Physiol, 1995, 108(1): 39-46.
    [15]
    Shvarts M, Borochov A, Weiss D. Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression[J]. Physiol Plant, 1997, 99(1): 67-72.
    [16]
    Lo Piero AR, Puglisi I, Rapisarda P, Petrone G. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage[J]. J Agric Food Chem, 2005, 53(23): 9083-9088.
    [17]
    Xie X, Li S, Zhang R, Zhao J, Chen Y, Zhao Q, Yao Y, You C, Zhang X, Hao Y. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant Cell Environ, 2012, 35(11): 1884-1897.
    [18]
    Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Lin-Wang K, Ferguson IB, Allan AC, Chen KS. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor[J]. Planta, 2010, 231(4): 887-899.
    [19]
    Romero I, Sanchez-Ballesta MT, Maldonado R, Escribano MI, Merodio C. Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature[J]. Plant Physiol, 2008, 165(5): 522-530.
    [20]
    Wrolstad RE, Culbertson JD, Cornwell CJ, Mattick LR. Detection of adulteration in blackberry juice concentrates and wines[J]. J AOAC Int, 1982, 65(6): 1417-1423.
    [21]
    Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nat Genet, 2011, (43): 1035-1039.
    [22]
    Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L. The purple cauliflower arises from activation of a MYB transcription factor[J]. Plant Physiol, 2010, 154(3): 1470-1480.
    [23]
    Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. Differential re-gulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J, 2007, 50(4): 660-677.
    [24]
    Bogs J, Ebadi A, McDavid D, Robinson SP. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development[J]. Plant Physiol, 2006, 140(1): 279-291.
    [25]
    Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, Lygin AV, Korban SS. Ectopic expression of apple F 3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress[J]. Plant Physiol, 2010, 153(2): 806-820.
    [26]
    Wang J, Liao D. Survey and evaluation on pigment resources of plants[J]. News Report of Food Additives in China, 1993, (1): 40-47 (In Chinese).
    [27]
    Burdzinski C, Wendell DL. Mapping the anthocyaninless (anl) locus in rapid-cycling Brassica rapa (RBr) to linkage group R9[J]. BMC Genet, 2007, (8): 64.
    [28]
    Ozela EF, Stringheta PC, Chauca MC. Stability of anthocyanin in spinach vine (Basella rubra) fruits[J]. Cien Inv Agr, 2007, 34(2):115-120.
    [29]
    Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. Re-gulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. Plant J, 2008, 53(5): 814-827.
  • Related Articles

    [1]Fan Jinshibo, Zhong Xinxin, Shan Tingyu, Zhang Jingjing, Wang Zhiwei, Wu Jiawen. Identification and analysis of 1R-MYB transcription factors regulating the phenylpropane biosynthesis pathway in Ranunculus japonicus Thunb.[J]. Plant Science Journal, 2024, 42(4): 478-487. DOI: 10.11913/PSJ.2095-0837.23283
    [2]Song Songquan, Tang Cuifang, Jiang Xiaocheng, Wang Weiqing, Cheng Hongyan. Research progress on DOG1, a key regulator of seed dormancy and germination[J]. Plant Science Journal, 2024, 42(2): 254-265. DOI: 10.11913/PSJ.2095-0837.23107
    [3]Niu Ting-Feng, Ge Li-Ping, Su Yun-Ting, Wang Zhuang-Lin, Li Run-Zhi. Identification and functional analysis of Euphorbia lathyris L. transcription factor ElWRI1[J]. Plant Science Journal, 2023, 41(4): 458-466. DOI: 10.11913/PSJ.2095-0837.22250
    [4]Yi Ai-Lin, Liu Dong-Mei, Pi Li-Min. Role of intercellular movement of transcription factors in plant growth and development[J]. Plant Science Journal, 2021, 39(5): 552-558. DOI: 10.11913/PSJ.2095-0837.2021.50552
    [5]Bi Chu-Yun, Huang Xiao-Fang, Wang He-Shou, Chen Qi-Jun, Hu Yun-Zhuo, Huang Bi-Fang, Xu Ming, Yang Zhi-Jian, Chen Xuan-Yang, Lin Shi-Qiang. Identification of TCP transcription factors in Ipomoea batatas (L.) Lam. genome and expression analysis under stress[J]. Plant Science Journal, 2021, 39(2): 163-171. DOI: 10.11913/PSJ.2095-0837.2021.20163
    [6]Zhao Cai-Mei, Huang Xing-Qi, Yin Fu-You, Li Ding-Qin, Chen Yue, Chen Ling, Cheng Zai-Quan. Research progress on NAC transcription factor family in Oryza sativa L.[J]. Plant Science Journal, 2020, 38(2): 278-287. DOI: 10.11913/PSJ.2095-0837.2020.20278
    [7]Zu Kui-Ling, Dong Shu-Bin, Li Jian-Xia, Xu Shen-Jian, Zhao Liang-Cheng. Differentially expressed genes analysis of terpenoid biosynthesis related to aril development in Celastrus orbiculatus Thunb.[J]. Plant Science Journal, 2017, 35(2): 276-282. DOI: 10.11913/PSJ.2095-0837.2017.20276
    [8]Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128
    [9]ZHANG Zhi-Fei, YANG Zhi-Jian, ZHOU Qian, ZHAO Zhi-Li. Advanced Study on Gene Expression Regulatory Mechanisms of DREB2s Transcription Factor Gene[J]. Plant Science Journal, 2014, 32(3): 297-303. DOI: 10.3724/SP.J.1142.2014.30297
    [10]ZHANG Yu-Bao, XIE Zhong-Kui, LI Tong-Xiang, WANG Ya-Jun, GUO Zhi-Hong, WANG Zhi-Li. Prokaryotic Expression of DREB1A Transcription Factor[J]. Plant Science Journal, 2007, 25(4): 326-330.

Catalog

    Article views (1316) PDF downloads (1942) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return