Advance Search
CUI Guo-Peng, WANG Sheng-Jie, QIN Rui, LIU Hong, GONG Han-Yu, LI Gang, YU Guang-Hui. Dynamic Changes of Methylcytosine in Polarized Cell Growth and Their Response to GABA Signals[J]. Plant Science Journal, 2015, 33(4): 521-527. DOI: 10.11913/PSJ.2095-0837.2015.40521
Citation: CUI Guo-Peng, WANG Sheng-Jie, QIN Rui, LIU Hong, GONG Han-Yu, LI Gang, YU Guang-Hui. Dynamic Changes of Methylcytosine in Polarized Cell Growth and Their Response to GABA Signals[J]. Plant Science Journal, 2015, 33(4): 521-527. DOI: 10.11913/PSJ.2095-0837.2015.40521

Dynamic Changes of Methylcytosine in Polarized Cell Growth and Their Response to GABA Signals

More Information
  • Received Date: January 18, 2015
  • Published Date: August 27, 2015
  • DNA cytosine methylation (5mC) plays an important role in plant development. A variety of environmental factors, such as cellular endogenous and exogenous stress factors, can trigger changes in DNA methylation. To explore the possible mechanism regulated by γ-aminobutyric acid (GABA) in plant development, we analyzed the content of 5mC and its response to GABA signals in the polarized growth of tobacco pollen tubes and Arabidopsis roots. Results showed that GABA (1.0 mmol/L) significantly promoted the growth of tobacco pollen tubes and Arabidopsis roots, significantly decreased the content of 5mC in the genomic DNA of tobacco pollen tubes and Arabidopsis roots, and increased the content of 5-hydroxyl cytosine (5hmC). 5hmC is an important intermediate of 5mC active demethylation via its oxidative metabolic pathway. Our results demonstrated that GABA, as an important exogenous signal, could regulate dynamic changes in DNA methylation.
  • [1]
    Maiti A, Michelson AZ, Armwood CJ, Lee JK, Drohat AC. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA[J].J Am Chem Soc, 2013, 135(42): 15813-15822.
    [2]
    Bagci H, Fisher AG. DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division[J].Cell Stem Cell, 2013, 13(3): 265-269.
    [3]
    Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J. Programming and inheritance of parental DNA methylomes in mammals[J].Cell, 2014, 157(4): 979-991.
    [4]
    Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction[J].Nat Rev Genet, 2014, 15(9): 613-624.
    [5]
    汪艳杰, 龙鸿, 姚家玲. 亚硫酸氢钠测序法检测水稻FIE基因CpG岛甲基化状态[J].植物科学学报, 2011, 29(1): 134-139.
    [6]
    邓莹, 高乐旋, 朱珠, 杨继. 不同水陆环境中喜旱莲子草甲基化调控因子表达水平和差异表达基因启动子区甲基化状态分析[J].植物科学学报, 2014, 32(5): 475-486.
    [7]
    Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses[J].Plant Cell Environ, 2010, 33(4): 604-611.
    [8]
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J].Nat Genet, 2003, 33(Suppl): 245-254.
    [9]
    Eichten SR, Schmitz RJ, Springer NM. Epigene-tics: beyond chromatin modifications and complex genetic regulation[J].Plant Physiol, 2014, 165(3): 933-947.
    [10]
    Bouché N, Fromm H. GABA in plants: just a metabolite?[J].Trends Plant Sci, 2004, 9(3): 110-115.
    [11]
    Yu GH, Liang JG, He ZK, Sun MX. Quantum dot-mediated detection of gamma-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco[J].Chem Biol, 2006, 13(7): 723-731.
    [12]
    马兆武, 杨旭红, 余光辉. γ-氨基丁酸对烟草MAPK和ACS1基因表达的分叉调节[J].武汉植物学研究, 2008, 26(5): 520-523.
    [13]
    Liu CL, Zhao L, Yu GH. The dominant glutamic acid metabolic flux to produce γ-aminobutyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity[J].J Integr Plant Biol, 2011, 53(8): 608-618.
    [14]
    张瑞琦, 赵丽, 覃永华, 徐鑫, 余光辉. γ-氨基丁酸促进拟南芥开花的机理研究[J].中国农学通报, 2012, 28(15): 142-147.
    [15]
    赵丽, 赵志龙, 龚汉雨, 覃永华, 余光辉. GABA对烟草花粉管Ca2+和K+的动态调节表明离子通道参与了花粉管生长的调控[J].中国细胞生物学报, 2013, 32(5): 668-675.
    [16]
    Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, Sun MX. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase[J].J Exp Bot, 2014, 65(12): 3235-3248.
    [17]
    Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J].Nat Rev Genet, 2010,11(3): 204-220.
    [18]
    Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Epigenetic mechanisms of plant stress responses and adaptation[J].Plant Cell Rep, 2013, 32(8): 1151-1159.
    [19]
    Slotkin RK, Vaughn M, Borges F, Tanurdzic' M, Becker JD, Feijó JA, Martienssen RA. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen[J].Cell, 2009, 136(3): 461-472.
    [20]
    Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN. A gene expression map of the Arabidopsis root[J].Science, 2003, 302(5652): 1956-1960.
    [21]
    Yu GH, Peng XB, Cheng G, Liu XQ, Wang CT, Sun MX. Specifically proteomic identification of differentially expressed proteins linking pollen tube growth with γ-aminobutyric acid responses in Nicotiana tabacum pollen proteomics[C]//21st IUBMB & 12th FAOBMB International Congress of Biochemistry and Molecular Biology. Shanghai, 2009: 116.
    [22]
    Yu GH, Zhao L, Xiang WH, Qin YH, Xu X. Whole-genome scale analysis of gene expression profiling of Arabidopsis flowering promotion in responding to γ-aminobutyric acid signals[C]//2012 International Symposium on Epigenetic Regulation in Higher Plants (2012 ISERHP). Beijing: 2012.
    [23]
    Tang Y, Xiong J, Jiang HP, Zheng SJ, Feng YQ, Yuan BF. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis[J].Anal Chem, 2014, 86(15): 7764-7772.
    [24]
    Brooks SC, Fischer RL, Huh JH, Eichman BF. 5-methylcytosine recognition by Arabidopsis thaliana DNA glycosylases DEMETER and DML3[J].Biochem, 2014, 53(15): 2525-2532.
    [25]
    Liu S, Dunwell TL, Pfeifer GP, Dunwell JM, Ullah I, Wang Y. Detection of oxidation products of 5-Methyl-29-Deoxycytidine in Arabidopsis DNA[J].PLoS One, 2013, 8(12): e84620.
    [26]
    Moricová P, Ondej V, Navrátilová B, Luhová L. Changes of DNA methylation and hydroxymethylation in plant protoplast cultures[J].Acta Biochim Pol, 2013, 60(1): 33-36.
  • Related Articles

    [1]Zhao Zhi-Hui, Zhang Yu-Ge, Gao Kang, Tian Yuan-Kai, Zhang Qiu-Ling, Fang Zhi-Jun, Wang Shuo, Liu Hao, Ji Yu-Shan, Dai Si-Lan. Variation and correlation analysis of florescence and main ornamental traits of Chrysanthemum × morifolium Ramat. varieties[J]. Plant Science Journal, 2023, 41(2): 214-223. DOI: 10.11913/PSJ.2095-0837.22172
    [2]Chen Mei-Yan, Zhang Peng, Zhao Ting-Ting, Han Fei, Liu Xiao-Li, Zhong Cai-Hong. Relationship between harvest indices and fruit quality traits in Actinidia chinensis ‘Jintao’[J]. Plant Science Journal, 2019, 37(5): 621-627. DOI: 10.11913/PSJ.2095-0837.2019.50621
    [3]BAI Jiang-Ping, HU Kai-Ming, GAO Hui-Juan, WANG Xiao-Bin, YANG Hong-Yu, YU Bin, ZHANG Jun-Lian, WANG Di. Transcriptional Expression of the StSnRK2 Gene Family in Response to Osmotic Stress and Correlation Analysis Between Physiological Traits[J]. Plant Science Journal, 2016, 34(4): 602-613. DOI: 10.11913/PSJ.2095-0837.2016.40602
    [4]LI Xiu-Ling, WANG Xiao-Guo, LI Chun-Niu, ZHOU Jin-Ye, DENG Jie-Ling, ZENG Song-Jun, BU Zhao-Yang, LU Jia-Shi. Adaptability Evaluation of Ex Situ Conservation of Thirteen Wild Paphiopedilum Species by Gray-Correlation Analysis[J]. Plant Science Journal, 2015, 33(3): 326-335. DOI: 10.11913/PSJ.2095-0837.2015.30326
    [5]XU Chen-Shan, XU Ai-Hong, GAO Dong-Sheng, CHENG Shu-Han. Mathematical Model of Apple Fruit Growth and Correlation Analysis among Growth Indices[J]. Plant Science Journal, 2015, 33(1): 72-80. DOI: 10.11913/PSJ.2095-0837.2015.10072
    [6]ZHANG Lei, WANG Yan-Chang, HUANG Hong-Wen. Investigation of the Correlations between the Leaf and Fruit Vitamin C Content in Actinidia[J]. Plant Science Journal, 2010, 28(6): 750-755.
    [7]GUO Hong-Bo, KE Wei Dong, LI Shuang-Mei. Genetic Variability and Interrelationships among Morphological and Agronomical Characteristics in Rhizome Lotus (Nelumbo nucifera Gaertn.ssp.nucifera) Germplasms[J]. Plant Science Journal, 2010, 28(2): 126-136.
    [8]Li Wei, Zhong Yang. ASSCIATION AND CORRELATION CORRELATION ANALYESE OF THE SHORELINE WETLAND PLANTS IN FUTOUHU LAKE[J]. Plant Science Journal, 1995, 13(1): 65-69.
    [9]Zhang Quanfa, Yin Yaochuan, Jin Yixing, Zheng Zhong. THE THEORY OF CANONICAL CORRELATION ANALYSIS IN ECOLOGY[J]. Plant Science Journal, 1994, 12(3): 240-246.
    [10]Zhang Quanfa, Wang Yingming, Jin Yixing, Zheng Zhong. CANONICAL CORRELATION ANALYSIS——A MULTIVARIATION ANALYSIS TECHNIQUE APPLICATED IN ECOLOGY[J]. Plant Science Journal, 1993, 11(2): 163-173.
  • Cited by

    Periodical cited type(5)

    1. 王文川,薛沛,刘素华. 1999-2018年河南省植被覆盖时空演变分析. 水土保持研究. 2022(02): 243-248+264 .
    2. 王静,刘天军. 基于RUE的植被覆盖动态演变特征及归因分析——以宝鸡地区为例. 生态环境学报. 2020(06): 1078-1089 .
    3. 王静,姚顺波,刘天军. 基于RUE的宝鸡地区生长季退耕还林(草)工程生态效果评价. 长江流域资源与环境. 2020(09): 2016-2027 .
    4. 程腊梅,张旭,葛继稳,王立辉,王玲玲,李扬. 湖北生物多样性保护优先区域生态系统五年(2010-2015)变化. 植物科学学报. 2019(02): 144-153 . 本站查看
    5. 赵玉. 渭南市植被覆盖变化及其与气候因子的相关性. 生态科学. 2019(05): 92-103 .

    Other cited types(1)

Catalog

    Article views (1096) PDF downloads (1316) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return