Advance Search
LI Ting, QIN Dao-Feng, DAI Can. An Estimation of the Outcrossing Rate in Sagittaria trifolia Using SSR Fluorescence Markers[J]. Plant Science Journal, 2015, 33(4): 554-563. DOI: 10.11913/PSJ.2095-0837.2015.40554
Citation: LI Ting, QIN Dao-Feng, DAI Can. An Estimation of the Outcrossing Rate in Sagittaria trifolia Using SSR Fluorescence Markers[J]. Plant Science Journal, 2015, 33(4): 554-563. DOI: 10.11913/PSJ.2095-0837.2015.40554

An Estimation of the Outcrossing Rate in Sagittaria trifolia Using SSR Fluorescence Markers

More Information
  • Received Date: May 10, 2015
  • Published Date: August 27, 2015
  • The estimation of mating systems in self-compatible plants can help us understand the reproductive status of plants, the evolutionary trajectories between outcrossing and selfing, and the natural history or selective pressure on specific populations. Sagittaria trifolia is a self-compatible species, with both sexual and clonal reproduction. Male and female flowers sometimes co-bloom among and within inflorescences, therefore creating a chance of geitonogamy. In this study, we used SSR markers to estimate the outcrossing rate of S. trifolia in natural populations. Our experiment emphasized the polymorphism of microsatellite loci in different populations and highlighted the accuracy and advantage of the methodology of fluorescence quantification in visualizing PCR products. Results showed that 3 out of 28 primer pairs had high polymorphism, with the number of alleles at 5, 6, and 6 combining multiple populations. With the use of the three selected primer pairs, we estimated the outcrossing rate for 31 fruits from six plants in a natural population of S. trifolia, which was 92.87%±2.5%. Our study indicated that the mating system in S. trifolia was predominately outcrossing in natural populations and the contribution of clonal reproduction to offspring was very limited. We also compared two alternative methodologies in analyzing PCR products, namely Native-PAGE imaging and fluorescence quantification. The latter yielded a higher estimation on allele polymorphism, heterozygosity and therefore a more accurate outcrossing rate. After considering the cost, manpower and time collectively, we recommend employing fluorescence quantification.
  • [1]
    Zhou SL, Hong DY. Recent advances and trends in pollinator biology[C]//Li CS ed. Advances in Plant Sciences: Vol 1. Beijing: China Higher Education Press, 1998: 48-57.
    [2]
    Barrett SCH, Harder LD. Ecology and evolution of plant mating[J]. Trends Ecol Evol, 1996, 11(2): 73-79.
    [3]
    Jarne P, Charlesworth D. The evolution of the selfing rate in functionally hermaphrodite plants and animals[J]. Annu Rev Ecol Syst, 1993, 24(1): 441-466.
    [4]
    Traveset A. Ecology of plant reproduction: mating systems and pollination[C]//Pugnaire FI, Valladares F, eds. Handbook of functional plant ecology. New York : Elsevier Science Ltd Press, 1999: 545-588.
    [5]
    Chang SM, Rausher MD. Frequency dependent pollen discounting contributes to maintenance of a mixed mating system in the common morning glory Ipomoea purpurea[J]. Am Nat, 1998, 152(5): 671-683.
    [6]
    张大勇. 植物交配系统的进化资源分配对策与遗传多样性[J]. 植物生态学报, 2001, 25(2): 130-143.
    [7]
    He TH, Ge S. Mating system, paternity analysis and gene flow in plant populations[J]. J Plant Ecol, 2001, 25(2): 144-154.
    [8]
    汪小凡. 小慈姑的开花状态传粉机制与交配系统[J]. 植物生态学报, 2002, 5(2): 155-160.
    [9]
    Chen XY, Li N. The mating system of Ardisiacrenata var. bicolor (Myrsinaceae), a subtropical understory shrub, in Tiantong National Forest Park, Zhejiang Province[J]. J Plant Ecol, 2001, 25(2):161-165.
    [10]
    张冬梅, 沈熙怀. 利用同工酶对油松无性系种子进行父本分析[J]. 植物生态学报, 2001, 25(2): 166-174.
    [11]
    Huelsenbeck JP, Crandall KA. Phylogeny estimation and hypothesis testing using maximum likelihood[J]. Annu Rev Ecol Evol Syst, 2003, 28(4): 437-466.
    [12]
    Barrett SCH. The evolution maintenance and loss of self-incompatibility systems[C]//Lovett Doust J, Lovett Doust L, eds. Plant Reproductive Ecology. Oxford: Oxford University Press, 1988: 98-124.
    [13]
    Bertin RI. Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms[J]. Am J Bot, 1993, 80(5): 557-560.
    [14]
    Bertin RI, Newman CM. Dichogamy in angiosperms[J]. Bot Rev, 1993, 59(2): 112-152.
    [15]
    汪小凡, 陈家宽. 野慈姑自然群体异交率的定量估测[J]. 遗传, 2000, 22(5): 316-318.
    [16]
    李汝玉, 杨平平, 宋国安. SSR及其在品种鉴定及种子检测中的应用[J]. 种子, 1999, 33(5): 33-38.
    [17]
    马琳, 余显权, 赵福胜. 贵州地方水稻品种的SSR遗传多样性分析[J]. 中国水稻科学, 2010, 24(3): 237-243.
    [18]
    陈新民, 何中虎, 史建荣, 夏兰芹, Rick Ward, 周阳, 蒋国梁. 利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究[J]. 作物学报, 2003, 29(1): 13-19.
    [19]
    闫路娜, 张德兴. 种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响[J]. 动物学报, 2004, 50(2): 279-290.
    [20]
    陈伯望, 洪菊生. 杉木和秃杉群体的叶绿体微卫星分析[J]. 林业科学, 2000, 36(3): 46-51.
    [21]
    田华, 康明, 李丽. 中国板栗自然居群微卫星(SSR)遗传多样性[J]. 生物多样性, 2009, 17(3): 296-302.
    [22]
    张鹏飞, 张福花, 张茹. 山西省榛属植物居群的SSR遗传多样性研究[J]. 植物科学学报, 2014, 32(2): 131-138.
    [23]
    蔡郁, 赵华, 陈晓东. 中国麻风树种质资源SSR遗传多样性的研究初报[J]. 植物科学学报, 2011, 29(1): 78-80.
    [24]
    范宏环, 王林友, 张礼霞. 通过分子标记辅助选择技术选育携有水稻白叶枯病抗性基因Xa23的水稻株系[J]. 中国水稻科学, 2011, 25(3): 331-334.
    [25]
    赵坚义, Becker HC. 同工酶分子标记研究中国和欧洲栽培油菜的遗传差异[J]. 作物学报, 1998, 24(2): 213-220.
    [26]
    Dorken ME. The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae)[J]. Evolution, 2002, 56(1):31-41.
    [27]
    李永祥, 王显国, 丛丽丽. 不同性别野牛草同工酶酶谱分析[J]. 草地学报, 2012, 20(3): 530-536.
    [28]
    Lynch M, Milligan BG. Analysis of population genetic structure with RAPD markers[J]. Mol Ecol, 1994, 3(2):91-99.
    [29]
    万怡震. 中国葡萄属野生种抗病性及抗病基因RAPD标记作图研究[D]. 杨凌:西北农林科技大学, 2003: 96.
    [30]
    黄久香, 张寿洲, 庄雪影, 李秉滔. 12种夹竹桃科植物的RAPD分析[J]. 福建林业科技, 2007, 34(3): 14-18.
    [31]
    吴疆翀, 彭兴民, 郑益兴, 张燕平. 印楝异交率和基因流的分析[J]. 林业科学研究, 2008, 21(5): 593-598.
    [32]
    罗林广, 王新旺, 罗绍春. 分子标记及其在作物遗传育种中的应用[J]. 江西农业学报, 1997, 9(1): 45-54
    [33]
    魏暮, 黎晓英, 黄英, 史宪伟. 遗传标记及其发展概述[J]. 动物科学与动物学, 2004, 21(10): 1218-1221.
    [34]
    陈东明. 遗传标记及其在园艺植物研究中的应用[J]. 农业生物技术科学, 2005, 21(7): 66-69.
    [35]
    朱颜, 周国利, 吴玉厚. 遗传标记的研究进展和应用[J]. 延边大学农学学报, 2004, 26(1): 64-69.
    [36]
    贾继增. 分子标记种质资源鉴定和分子标记育种[J]. 中国农业科学, 1996, 29(4): 1-10.
    [37]
    张志峰, 史洪才, 武坚, 简子健. 微卫星DNA聚丙烯酰胺凝胶电泳(PAGE)银染法的改良[J]. 生物技术, 2005, 15(3): 51-53.
    [38]
    Reusch TBH. Pollination in the marine realm: microsatellites reveal high outcrossing rates and multiple paternity in eelgrass Zostera marina[J]. Heredity, 2000, 85(5): 459-464.
    [39]
    Wu ZH, Wang SZ, Hu JH, Li F, Ke WD, Ding Y. Development and characterization of microsatellite markers for Sagittaria trifolia var. sinensis (Alismata-ceae)[J]. Am J Bot, 2011, 98(2): e36-38.
    [40]
    Yakimowski SB, Rymer PD, Stone H. Isolation and characterization of 11 microsatellite markers from Sagittaria latifolia (Alismataceae)[J]. Mol Ecol Resour, 2009, 9(2): 579-581.
    [41]
    Duan YW, Dafni A, Hou QZ, He YP, Liu JQ. Delayed selfing in an alpine biennial Gentianopsis paludosa (Gentianaceae) in the Qinghai-Tibetan Plateau[J]. J Integr Plant Biol, 2010, 52(6): 593-599.
    [42]
    Goodwillie C, Kalisz S, Eckert CG. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence[J]. Annu Rev Ecol Evol Syst, 2005, 36: 47-79.
    [43]
    Harder LD, Barrett SCH. Mating cost of large floral displays in hermaphrodite plants[J]. Nature, 1995, 373(6514): 512-515.
    [44]
    Huang SQ, Sun SG, Takahashi Y, Guo YH. Gender variation of sequential inflorescences in a monoecious plant Sagittaria trifolia (Alismataceae)[J]. Ann Bot, 2002, 90(5):613-622.
    [45]
    Barrett SCH. Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond[J]. Philos T R Soc B, 2003, 358(1434): 991-1004.
    [46]
    Chen JM, Liu F, Wang QF, Motley TJ. Phylogeography of a marsh herb Sagittaria trifolia (Alismataceae) in China inferred from cpDNA atpB-rbcL intergenic spacers[J]. Mol Phylogenet Evol, 2008, 48(1): 168-175.
  • Cited by

    Periodical cited type(10)

    1. 林协全,王宁,汪其双,陈春锦,刘锦航,邹双全,邹小兴. 福建金线莲的环境因子分析及生境适宜性评价. 山东农业大学学报(自然科学版). 2023(02): 201-207 .
    2. 林志强,马铁成. 新疆灌溉定额空间分布规律浅析. 水资源开发与管理. 2023(09): 69-74 .
    3. 艾拉努尔·卡哈尔,王鹏军,逯永满,袁祯燕,买买提明·苏来曼. 基于MaxEnt生态位模型预测木灵藓科三属植物在新疆的潜在分布区. 华中师范大学学报(自然科学版). 2022(03): 487-496+540 .
    4. 李雪,高广磊,孙桂丽,史浩伯,赵芳芳,马龙. 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区. 西部林业科学. 2021(01): 145-152 .
    5. 祖丽米热·买买提依明,维尼拉·伊利哈尔,艾拉努尔·卡哈尔,吾热古丽·艾买提,买买提明·苏来曼,刘永英. 基于最大熵模型的真藓属植物在新疆的潜在分布预测. 森林工程. 2021(04): 1-10+21 .
    6. 古丽妮尕尔·穆太力普,夏尤普·玉苏甫,袁祯燕,买买提明·苏来曼. 阿尔金山国家级自然保护区的对齿藓属(Didymodon Hedw.)植物调查. 东北林业大学学报. 2020(01): 34-43 .
    7. 张梅,禄彩丽,魏喜喜,马珊,刘伟峰,宋健,彭瑞,李建贵. 基于MaxEnt模型新疆枣潜在适生区预测. 经济林研究. 2020(01): 152-161 .
    8. 周亚东,Mwangi Brian Njoroge,Ndungu John Mbari,王生位,胡光万,王青锋. 基于MaxEnt模型模拟肯尼亚茜草科河骨木属植物的潜在分布及其在植物志中的应用初探(英文). 植物科学学报. 2020(05): 636-643 . 本站查看
    9. 杨冬臣,王佳颖,李静,杨一洲,张金林. 基于Maxent生态位模型的外来入侵植物刺果瓜在我国的适生区预测. 河北农业大学学报. 2019(03): 45-50 .
    10. 赵儒楠,何倩倩,褚晓洁,鲁志强,祝遵凌. 气候变化下千金榆在我国潜在分布区预测. 应用生态学报. 2019(11): 3833-3843 .

    Other cited types(15)

Catalog

    Article views (1307) PDF downloads (1686) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return