Advance Search
Chen Xiao-Lin, Chen Ya-Peng, Li Wei-Hong, Wang Yu-Yang. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions[J]. Plant Science Journal, 2018, 36(1): 45-53. DOI: 10.11913/PSJ.2095-0837.2018.10045
Citation: Chen Xiao-Lin, Chen Ya-Peng, Li Wei-Hong, Wang Yu-Yang. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions[J]. Plant Science Journal, 2018, 36(1): 45-53. DOI: 10.11913/PSJ.2095-0837.2018.10045

Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions

Funds: 

This work was supported by grants from the Pioneer Initiative Program of Chinese Academy of Science (TSS-2015-014-FW-2-3) and National Natural Science Foundation of China (41371515).

More Information
  • Received Date: July 16, 2017
  • Available Online: October 31, 2022
  • Published Date: February 27, 2018
  • The spatial distribution of fine roots can well reflect the utilization degree and adaptability of plants to the environment, which is essential for the evaluation of adaptation to adverse circumstances. We investigated the spatial distribution of Populus euphratica Oliv. fine roots (D ≤ 2 mm) and the relationship with groundwater depth and soil water content. Fine roots and soil samples were collected by the artificial trench profile method. Results showed that:(1) In the horizontal direction (range of 550 cm), fine root length density (RLD), fine root surface area density (SAD), and fine root mass density (RMD) of< P. euphratica changed insignificantly with distance from the tree trunk. (2) In the vertical direction, there were almost no fine roots in the top layer of the soil profile. With the increase in soil depth, both RLD and RMD exhibited increasing trends at first, and then showed decreasing trends. We found high fine specific root length (SRL) and specific root area (SRA) of< P. euphratica at the 280 cm soil depth. (3) RLD and RMD showed positive correlations with soil moisture content of the upper soil (0-180 cm), but exhibited spatial heterogeneities with soil moisture at deeper layers. These results revealed that P. euphratica roots were restricted by soil water conditions in the upper soil, and the fine roots in deeper soil were mainly affected by groundwater. The P. euphratica root system not only demonstrated the ability to develop into the deep moist soil, but also showed a strong horizontal expansion capability to cope with drought environments. This study provides a reference for understanding the adaptation mechanism of P. euphratica to extremely arid environments.
  • [1]
    Leppälammi-Kujansuu J, Aro L, Salemaa M, Hansson K, Kleja DB, Helmisaari HS. Fine root longevity and carbon input into soil from below-and aboveground litter in climatically contrasting forests[J]. For Ecol Manage, 2014, 326(8):79-90.
    [2]
    Iversen CM. Using root form to improve our understanding of root function[J]. New Phytol, 2014, 203(3):707-709.
    [3]
    杨秀云, 郭平毅, 韩有志, 宁鹏, 武小钢. 采伐干扰对林下草本根系生物量与土壤环境异质性关系的影响[J]. 植物科学学报, 2012, 30(6):545-551.

    Yang XY, Guo PY, Han YZ, Ning P, Wu XG. Effects of cutting disturbance on spatial heterogeneity between root biomass of the herb and soil environment in Larix principis-rupprechtii forests in Guandi Mountain[J]. Plant Science Journal, 2012, 30(6):545-551.
    [4]
    Long YQ, Kong DL, Chen ZX, Zeng H. Variation of the linkage of root function with root branch order[J]. PloS One, 2013, 8(2):e57153.
    [5]
    Fitter AH. Characteristics and functions of root systems[C]//Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots:The Hidden Half. New York:Marcel Dekker, 1996:1-20.
    [6]
    韩路, 王家强, 王海珍, 牛建龙, 于军. 塔里木荒漠绿洲过渡带主要种群生态位与空间格局分析[J]. 植物科学学报, 2016, 34(3):352-360.

    Han L, Wang JQ, Wang HZ, Niu JL, Yu J. Niche and spatial distribution pattern analysis of the main populations of the Tarim desert-oasis ecotone[J]. Plant Science Journal, 2016, 34(3):352-360.
    [7]
    王海珍, 陈加利, 韩路, 徐雅丽, 贾文锁. 地下水位对胡杨(Populus euphratica)和灰胡杨(Populus pruinosa)叶绿素荧光光响应与光合色素含量的影响[J]. 中国沙漠, 2013, 33(4):1054-1063.

    Wang HZ, Chen JL, Han L, Xu YL, Jia WS. Effects of groundwater levels on photosynthetic pigments and light response of chlorophyⅡ fluorescence parameters of Populus euphratica and Populus pruinosa[J]. Journal of Desert Research, 2013, 33(4):1054-1063.
    [8]
    周多多, 蒋少伟, 吴桂林, 李君. 不同水分条件下胡杨光响应曲线拟合模型比较[J]. 植物科学学报, 2017,35(3):406-412.

    Zhou DD, Jiang SW, Wu GL, Li J. Comparison of light response models of photosynthesis in Populus euphratica Oliv. grown under contrasting groundwater conditions[J]. Plant Science Journal, 2017, 35(3):406-412.
    [9]
    任志国, 陈亚鹏, 李卫红, 刘树宝. 地下水埋深对塔里木河下游建群种植物叶片d13C值的影响[J]. 草业学报, 2014, 23(2):76-82.

    Ren ZG, Chen YP, Li WH, Liu SB. The effect of groundwater depth on the d13C value of constructive species leaf in the lower reaches of the Tarim River[J]. Acta Prataculturae Sinica, 2014, 23(2):76-82.
    [10]
    Pei ZQ, Xiao CW, Dong D, Zhang SR. Comparison of the fine root dynamics of Populus euphratica forests in diffe-rent habitats in the lower reaches of the Tarim River in Xinjiang, China, during the growing season[J]. J Forest Res-Jpn, 2012, 17(4):343-351.
    [11]
    夏延国,董芳宇,吕爽,王键铭,井家林,李景文. 极端干旱区胡杨细根的垂直分布和季节动态[J]. 北京林业大学学报, 2015, 37(7):37-44.

    Xia YG, Dong FY, Lü S, Wang JM, Jing JL, Li JW. Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area[J]. Journal of Beijing Forestry University, 2015, 37(7):37-44.
    [12]
    司建华, 冯起, 李建林, 赵健. 荒漠河岸林胡杨吸水根系空间分布特征[J]. 生态学杂志, 2007, 26(1):1-4.

    Si JH, Feng Q, Li JL, Zhao J. Spatial distribution pattern of Populus euphratica fine roots in desert riparian forest[J]. Chinese Journal of Ecology, 2007, 26(1):1-4.
    [13]
    黄晶晶, 井家林, 曹德昌, 张楠, 李景文, 夏延国, 吕爽. 不同林龄胡杨克隆繁殖根系分布特征及其构型[J]. 生态学报, 2013,33(14):4331-4342.

    Huang JJ, Jing JL, Cao DC, Zhang N, Li JW, Xia YG, Lü S. Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14):4331-4342.
    [14]
    冯起, 司建华, 李建林, 席海洋. 胡杨根系分布特征与根系吸水模型建立[J]. 地球科学进展, 2008, 23(7):765-772.

    Feng Q, Si JH, Li JL, Xi HY. Feature of root distribution of Populus euphratica and its water uptake model in extreme arid region[J]. Advances in Earth Science, 2008, 23(7):765-772.
    [15]
    Zhu YH, Ren LL, Skaggs TH, Lyu HS, Yu ZB, Wu YQ, Fang XQ. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China[J]. Hydrol Processes, 2009, 23(17):2460-2469.
    [16]
    苏里坦, 古力米热·哈那提, 刘迁迁. 塔里木河下游胡杨林根系吸水模型[J]. 干旱区地理, 2017, 40(1):102-107.

    Su LT, Hanati G, Liu QQ. Root water uptake model of Populus euphratica in the lower reaches of Tarim River[J]. Arid Land Geography, 2017, 40(1):102-107.
    [17]
    吕爽, 张现慧, 张楠, 夏延国, 井家林, 李景文. 胡杨幼苗根系生长与构型对土壤水分的响应[J]. 西北植物学报, 2015, 35(05):1005-1012.

    Lü S, Zhang XH, Zhang N, Xia YG, Jing JL, Li JW. Response of root growth and architecture of Populus euphratica seedling on soil water[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5):1005-1012.
    [18]
    李建林, 冯起, 司建华, 常宗强, 苏永红, 席海洋. 极端干旱地区胡杨林根系分布的非线性分析[J]. 北京林业大学学报, 2007, 29(6):109-114.

    Li JL, Feng Q, Si JH,Chang ZQ, Su YH, Xi HY. Nonli-near analysis of root distribution of Populus euphratica forests in the extremely arid region-Ejina, Inner Mongolia in northern China[J]. Journal of Beijing Forestry University, 2007, 29(6):109-114.
    [19]
    木巴热克·阿尤普, 陈亚宁, 李卫红, 郝兴明, 马建新, 苏芮. 极端干旱环境下的胡杨细根分布与土壤特征[J]. 中国沙漠, 2011, 31(6):1449-1458.

    Ayup M, Chen YN, Li WH, Hao XM, Ma JX, Su R. Fine root distribution of Populus euphratica Oliv. and its relations with soil factors under extremely arid environment[J]. Journal of Desert Research, 2011, 31(6):1449-1458.
    [20]
    叶茂, 徐海量, 王晓峰, 申瑞新. 塔里木河下游阿拉干断面胡杨根系空间分布规律研究[J]. 西北植物学报, 2011, 31(4):801-807.

    Ye M, Xu HL, Wang XF, Shen RX. Spatial distribution characteristics of root system of Populus euphratica in the Algan transection of the lower Tarim River[J]. Acta Bota-nica Boreali-Occidentalia Sinica, 2011, 31(4):801-807.
    [21]
    付爱红, 陈亚宁, 李卫红. 极端干旱区旱生芦苇叶水势变化及其影响因子研究[J]. 草业学报, 2012, 21(3):163-170.

    Fu AH, Chen YN, Li WH. Analysis on dominant factors influencing water potential of Phragmites australis in extremely arid areas[J]. Acta Prataculturae Sinica, 2012, 21(3):163-170.
    [22]
    李建林, 冯起, 司建华. 极端干旱区胡杨吸水根系的分布与模拟研究[J]. 干旱区地理, 2008, 31(1):97-101.

    Li JL, Feng Q, Si JH. Distribution of uptake roots of Populus euphratica Oliv. in extreme arid region, China[J]. Arid Land Geography, 2008, 31(1):97-101.
    [23]
    Imada S, Taniguchi T, Acharya K, Yamanaka N. Vertical distribution of fine roots of Tamarix ramosissima in an arid region of southern Nevada[J]. J Arid Environ, 2013, 92:46-52.
    [24]
    Zhou ZC, Shangguan ZP. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China[J]. Plant Soil, 2007, 291(1-2):119-129.
    [25]
    王文, 蒋文兰, 谢忠奎, 张德罡, 宫旭胤, 寇江涛. 黄土丘陵地区唐古特白刺根际土壤水分与根系分布研究[J]. 草业学报, 2013, 22(1):20-28.

    Wang W, Jiang WL, Xie ZK, Zhang DG, Gong XY, Kou JT. Study on soil water in rhizosphere and root system distribution of Nitraria tangutorum on Loess Plateau[J]. Acta Prataculturae Sinica, 2013, 22(1):20-28.
    [26]
    刘健, 贺晓, 包海龙, 周成军. 毛乌素沙地沙柳细根分布规律及与土壤水分分布的关系[J]. 中国沙漠, 2010, 30(6):1362-1366.

    Liu J, He X, Bao HL, Zhou CJ. Distribution of fine root of Salix psammophila and its relationship with soil moisture in Mu Us Sandland[J]. Journal of Desert Research, 2010, 30(6):1362-1366.
    [27]
    Tron S, Perona P, Gorla L, Schwarz M, Laio F, Ridolfi L. The signature of randomness in riparian plant root distributions[J]. Geophys Res Lett, 2015, 42(17):7098-7106.
    [28]
    Xu GQ, Yu DD, Li Y. Patterns of biomass allocation in Haloxylon persicum woodlands and their understory herbaceous layer along a groundwater depth gradient[J]. Forest Ecol Manag, 2017, 395:37-47.
    [29]
    刘波, 曾凡江, 郭海峰, 曾杰. 骆驼刺幼苗生长特性对不同地下水埋深的响应[J]. 生态学杂志, 2009, 28(2):237-242.

    Liu B, Zeng FJ, Guo HF, Zeng J. Effects of groundwater table on growth characteristics of Alhagi sparsifolia Shap. seedlings[J]. Chinese Journal of Ecology, 2009, 28(2):237-242.
    [30]
    Bauhus J, Khanna PK, Menden N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii[J]. Can J Forest Res, 2000, 30(12):1886-1894.
    [31]
    Berntson GM. Modelling root architecture:are there tradeoffs between efficiency and potential of resource acquisition?[J]. New Phytol, 1994, 127(3):483-493.
    [32]
    Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress[J]. Field Crop Res, 2011, 120(2):262-270.
    [33]
    张现慧, 钟悦鸣, 谭天逸, 吕爽, 王健铭, 李景文. 土壤水分动态对胡杨幼苗生长分配策略的影响[J]. 北京林业大学学报, 2016, 38(5):92-99.

    Zhang XH, Zhong YM, Tan TY, Lü S, Wang JM, Li JW. Effect of soil moisture dynamics on growth and allocation strategy of Populus euphratica seedlings[J]. Journal of Beijing Forestry University, 2016, 38(5):92-99.
    [34]
    February EC, Higgins SI. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water[J]. S Afr J Bot, 2010, 76(3):517-523.
    [35]
    Jian SQ, Zhao CY, Fang SM, Yu K. The distribution of fine root length density for six artificial afforestation tree species in Loess Plateau of Northwest China[J]. Forest Syst, 2015, 24(1):3.
  • Related Articles

    [1]Wang Qiuxue, Peng Shuting, Gan Wanyi, Peng Zhengdong, Xu Qi, Huang Liujing. Responses of leaf and fine root functional traits to water-salt gradients in the Fuzhou section of the Minjiang River Basin[J]. Plant Science Journal, 2024, 42(4): 454-465. DOI: 10.11913/PSJ.2095-0837.23270
    [2]Wang Yuqing, Zhou Shouhang, Ma Fulong, Wang Haizhen, Han Lu. Response of osmoregulatory substances and antioxidant enzyme activities in heteromorphic leaves of Populus euphratica Oliv. to groundwater depth[J]. Plant Science Journal, 2024, 42(2): 221-231. DOI: 10.11913/PSJ.2095-0837.23204
    [3]Ma Rui, Liu Chen-Yu, Han Lu, Wang Hai-Zhen. Trade-off relationship between leaf number and leaf size on current-year twigs of Populus euphratica Oliv. in response to groundwater gradients in extreme arid area of northwestern China[J]. Plant Science Journal, 2022, 40(2): 240-249. DOI: 10.11913/PSJ.2095-0837.2022.20240
    [4]Li Su-Hui, Chen Jin-Yi, Wang Jia-Min, Song Hai-Yan, Zhang Jing, Tao Jian-Ping, Liu Jin-Chun. Growth response of two annual herbs to karst soil depth and water supply[J]. Plant Science Journal, 2021, 39(3): 258-267. DOI: 10.11913/PSJ.2095-0837.2021.30258
    [5]He Chun-Mei, Zhang Zhao-Hui, Wang Zhi-Hui, Shi Kuang-Zheng. Water retention characteristics of Sphagnum and their relationship with soil nutrient content in the peatland of Maruo,Upland Guizhou[J]. Plant Science Journal, 2020, 38(5): 618-626. DOI: 10.11913/PSJ.2095-0837.2020.50618
    [6]Wang Yu-Chen, Wang Wen-Juan, Zhong Yue-Ming, Lei Shan-Qing, Li Jing-Wen. Study on the foraging behavior of clonal roots and its influencing factors in Populus euphratica Oliv.[J]. Plant Science Journal, 2020, 38(3): 410-417. DOI: 10.11913/PSJ.2095-0837.2020.30410
    [7]Guan Shou-Peng, Chen Fang-Qing, Lü Kun, Zhou Ju-Mei, Xia Ping-Juan. Responses of biomass and components of Myricaria laxiflora seedlings to simulated soil water level changes[J]. Plant Science Journal, 2019, 37(4): 485-494. DOI: 10.11913/PSJ.2095-0837.2019.40485
    [8]Zhou Duo-Duo, Jiang Shao-Wei, Wu Gui-Lin, Li Jun. Comparison of light response models of photosynthesis in Populus euphratica Oliv.grown under contrasting groundwater conditions[J]. Plant Science Journal, 2017, 35(3): 406-412. DOI: 10.11913/PSJ.2095-0837.2017.30406
    [9]LIU Hai-Yan, HUANG Cai-Mei, ZHOU Sheng-Yong, HUANG Li-Hua, ZOU Tian-Cai. Study on the Content Changes of Zinc and Selenium in Tea and Differences in the Planting Soil[J]. Plant Science Journal, 2015, 33(2): 237-243. DOI: 10.11913/PSJ.2095-0837.2015.20237
    [10]CHEN Wen Nian, WU Yan, WU Ning, LUO Peng. Changes of Five Alpine Species’ Individual Growth Along Snowmelt Gradient[J]. Plant Science Journal, 2009, 27(6): 629-636.
  • Cited by

    Periodical cited type(12)

    1. 刘瑶,钟全林,徐朝斌,程栋梁,郑跃芳,邹宇星,张雪,郑新杰,周云若. 不同大小刨花楠细根功能性状与根际微环境关系. 植物生态学报. 2024(06): 744-759 .
    2. 崔浩浩,张光辉,王茜,严明疆,曹乐,刘鹏飞. 石羊河流域下游天然绿洲地下水生态功能强弱周期性与机制. 水利学报. 2023(02): 199-207+219 .
    3. 代雅琦,刘艳萍,韩路,王海珍. 地下水埋深对胡杨叶片光合作用及抗氧化物质积累的影响. 植物研究. 2022(02): 299-308 .
    4. 温云梦,张冬冬,王家强,多晶,蔡海辉,柳维扬. 不同地下水埋深区域胡杨叶片叶绿素含量的光谱估测研究. 西部林业科学. 2022(04): 87-95 .
    5. 李丹,王杰慧,胡德越,李旭东,张忠峰,李霞,张仲超,路兴慧,赵红霞. 鲁西8种观赏竹细根功能性状与根际土壤养分的关系. 竹子学报. 2022(03): 63-71 .
    6. 苏天燕,贾碧莹,胡云龙,杨秋,毛伟. 地下水位埋深对沙质草地典型植物群落土壤环境因子和根系生物量的影响. 草业科学. 2021(09): 1694-1705 .
    7. 田起隆,刘彤. 极端干旱环境下白梭梭细根分布与土壤水分关系. 石河子大学学报(自然科学版). 2020(01): 75-82 .
    8. 王飞,马剑平,马俊梅,满多清,郭春秀,张裕年. 民勤不同林龄胡杨根区土壤理化性质及相关性分析. 西北林学院学报. 2020(03): 23-28+54 .
    9. Chunxiu GUO,Jianping MA,Junmei MA,Duoqing MAN,Fei WANG,Yunian ZHANG,Peng ZHAO. Photosynthetic Physiological Response to Drought Stress of Populus euphratica at Different Ages in Minqin. Agricultural Biotechnology. 2020(04): 26-30+44 .
    10. 吴敏,邓平,赵英,钟道发,曾令鑫. 不同林龄红锥人工林细根垂直分布和衰老生理特征. 生态学杂志. 2019(09): 2622-2629 .
    11. 詹龙飞,于水强,王维枫,王琪,王静波. 水平空间配置对南林-95杨人工林主要细根性状的影响. 北京林业大学学报. 2019(10): 11-19 .
    12. 高科,旦久罗布,次旦,何世丞,谢文栋,严俊,张海鹏,李艳容,拉巴扎西. 藏北人工草地节水自压灌溉增产增效技术. 当代畜牧. 2018(35): 13-14 .

    Other cited types(22)

Catalog

    Article views (807) PDF downloads (1044) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return