Advance Search
Qu Dan-Yang, Gu Wan-Rong, Li Li-Jie, Li Jing, Li Cai-Feng, Wei Shi. Regulation of chitosan on the ascorbate-glutathione cycle in Zea mays seedling leaves under cadmium stress[J]. Plant Science Journal, 2018, 36(2): 291-299. DOI: 10.11913/PSJ.2095-0837.2018.20291
Citation: Qu Dan-Yang, Gu Wan-Rong, Li Li-Jie, Li Jing, Li Cai-Feng, Wei Shi. Regulation of chitosan on the ascorbate-glutathione cycle in Zea mays seedling leaves under cadmium stress[J]. Plant Science Journal, 2018, 36(2): 291-299. DOI: 10.11913/PSJ.2095-0837.2018.20291

Regulation of chitosan on the ascorbate-glutathione cycle in Zea mays seedling leaves under cadmium stress

Funds: 

This work was supported by grants from the National Key Research and Development Program of China (2017YFD0300506) and ‘Academic Backbones’ Project of Northeast Agricultural University.

More Information
  • Received Date: August 31, 2017
  • Available Online: October 31, 2022
  • Published Date: April 27, 2018
  • Zea mays L. seedlings of the variety ‘Zhengdan 958’ were used as experimental material to analyze the effects of the external application of chitosan on the activities of antioxidant enzymes and concentrations of nonenzymatic antioxidant substances in the ascorbate-glutathione (AsA-GSH) cycle, as well as on Z.mays seedling biomass, leaf cadmium content, superoxide radical (O2·-) production rate, and hydrogen peroxide (H2O2) content under cadmium stress. With the prolongation of cadmium stress, oxidative stress on the maize seedlings increased, whereas the activities of antioxidant enzymes (APX, GR, DHAR, MDHAR) and concentrations of antioxidants (AsA, GSH) in the leaves decreased. The excessive accumulation of cadmium eventually inhibited the growth of the Z.mays seedlings. Under cadmium stress, the application of chitosan reduced the production ratesof O2·- and H2O2 in the Z. mays seedling leaves and increased the activities of APX, GR, DHAR, and MDHAR and concentrations of AsA and GSH, reaching a maximum at 72 h. Chitosan promoted the regeneration of AsA and GSH and maintained the redox status of cells, which promoted the growth of aerial parts of the Z.mays seedlings. These results indicated that chitosan maintained a high AsA-GSH cycle efficiency, improved the antioxidant capacity of Z. mays seedlings, and effectively alleviated the inhibition of seedling growth under cadmium stress.
  • [1]
    纪小凤, 郑娜, 王洋, 汤琳. 中国城市土壤重金属污染研究现状及展望[J]. 土壤与作物, 2016, 5(1):42-47.

    Ji XF, Zheng N, Wang Y, Tang L. Heavy metal contamination of urban soils in China:recent advances and prospects[J]. Soils and Crops, 2016, 5(1):42-47.
    [2]
    环境保护部. 环境保护部和国土资源部发布全国土壤污染状况调查公报[R/OL].(2014-04-17)[2018-03-14]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
    [3]
    李斌, 赵春江. 我国当前农产品产地土壤重金属污染形势及检测技术分析[J]. 农业资源与环境学报, 2013, 30(5):1-7.

    Li B, Zhao CJ. Current situation of heavy metals pollution in soil at farmland and detection technologies analysis in China[J]. Journal of Agriculture Resources and Environment, 2013, 30(5):1-7.
    [4]
    惠俊爱, 党志, 叶庆生. 镉胁迫对玉米光合特性的影响[J].农业环境科学学报, 2010, 29(2):205-210.

    Hui JA, Dang Z, Ye QS. Influence of cadmium stress on photosynthetic characteristics of maize[J]. Journal of Agro-Environment Science, 2010, 29(2):205-210.
    [5]
    王云, 蔡汉, 陆任云, 王振斌, 董英. 壳聚糖对镉胁迫条件下小麦生长及生理的影响[J].生态学杂志, 2007, 26(10):1671-1673.

    Wang Y, Cai H, Lu RY, Wang ZB, Dong Y. Effects of chitosan on Triticum aestivum growth and physiology under cadmium stress[J]. Chinese Journal of Ecology, 2007, 26(10):1671-1673.
    [6]
    黄辉, 李升, 郭娇丽. 镉胁迫对玉米幼苗抗氧化系统及光合作用的影响[J].农业环境科学学报, 2010, 29(2):211-215.

    Huang H, Li S, Guo JL. The influence of cadmium (Cd2+) to the antioxidant system and photosynthesis of seedling of Zea mays L.[J]. Journal of Agro-Environment Science, 2010, 29(2):211-215.
    [7]
    史静, 潘根兴, 夏运生, 张仕颖, 张乃明. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响[J].生态环境学报, 2013, 22(5):832-837.

    Shi J, Pan GS, Xia YS, Zhang SY, Zhang NM. Effects of Cd on different rice growth and antioxidant enzyme system[J]. Ecology and Environmental Sciences, 2013, 22(5):832-837.
    [8]
    Anjum NA, Umar S, Iqbal M, Khan NA. Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and asorbate-glutathione cycle metabolism[J]. Russ J Plant Physl, 2011, 58(1):92-99.
    [9]
    宋瑜, 金樑, 曹宗英, 王晓娟. 植物对重金属镉的响应及其耐受机理[J]. 草业学报, 2008, 17(5):84-91.

    Song Y, Jin L, Cao ZY, Wang XJ. Response and resis-tance mechanisms of plants to cadmium[J]. Acta Prata-culturae Sinica, 2008, 17(5):84-91.
    [10]
    陈坤明, 宫海军, 王锁民. 植物谷胱甘肽代谢与环境胁迫[J]. 西北植物学报, 2004, 24(6):1119-1130.

    Chen KM, Gong HJ, Wang SM. Glutathione metabolism and environment stresses in plants[J]. Acta Botantic Boreal-Occidentalia Sinica, 2004, 24(6):1119-1130.
    [11]
    蒋小姝, 莫海涛, 苏海佳, 张小勇. 甲壳素及壳聚糖在农业领域方面的应用[J]. 中国农学通报, 2013, 29(6):170-174.

    Jiang XS, Mo HT, Su HJ, Zhang XY. The application of chitin and chitosan in agriculture[J]. Chinese Agricultural Science Bulletin, 2013, 29(6):170-174.
    [12]
    Liu TT, Liu ZX, Song CJ, Hu Y, Han Z, et al. Chitin-induced dimerization activates a plant immune rece-ptor[J]. Science, 2012, 336(6085):1160-1164.
    [13]
    姜山, 朱启忠, 张真豪. 壳聚糖对小麦种子萌发及干旱胁迫下幼苗保护酶活性的影响[J].干旱地区农业研究, 2011, 29(1):206-209.

    Jiang S, Zhu QZ, Zhang ZH. Effects of chitosan on wheat germination and activities of protective enzyme in seedlings under drought stress[J]. Agricultural Research in the Acid Areas, 2011, 29(1):206-209.
    [14]
    王聪, 董永义, 贾俊英, 包金花, 马玉露, 郑毅. NaCl胁迫下外源壳聚糖对菜用大豆叶绿体抗氧化系统的影响[J]. 植物营养与肥料学报, 2016, 22(5):1356-1365.

    Wang C, Dong YY, Jia JY, Bao JH, Ma YL, Zheng Y. Effects of exogenous chitosan on antioxidant system in chloroplast of vegetable soybean under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5):1356-1365.
    [15]
    马彦霞, 郁继华, 张国斌, 曹刚. 壳聚糖对水分胁迫下辣椒幼苗氧化损伤的保护作用[J]. 中国农业科学, 2012, 45(10):1964-1971.

    Ma YX, Yu JH, Zhang GB, Cao G. Protective effects of exogenous chitosan on oxidative damage in pepper seedling leaves under water stress[J]. Scientia Agricultura Sinica, 2012, 45(10):1964-1971.
    [16]
    王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990(6):55-57.

    Wang AG, Luo GH. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications, 1990(6):55-57.
    [17]
    Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants-protective role of exogenous polyamines[J]. Plant Sci, 2000, 151(1):59-66.
    [18]
    Wang SY, Jiao HJ, Faust M. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple[J]. Plant Physiol, 1991, 82(2):231-236.
    [19]
    Anderson ME. Determination of glutathione and glutathione disulfide in biological samples[J]. Method Enzymol, 1984, 113(4):548-555.
    [20]
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880.
    [21]
    Foster JG, Hess JL. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen[J]. Plant Physiol, 1980, 66(33):482-487.
    [22]
    孙宁骁, 宋桂龙. 紫花苜蓿对镉胁迫的生理响应及积累特征[J]. 草业学报, 2015, 32(4):581-585.

    Sun NX, Song GL. Physiological response of Medicago sativa to cadmium stress and accumulation property[J]. Pratacultural Science, 2015, 32(4):581-585.
    [23]
    Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T. Alterations in photosynthesis and some antioxidant enzymatic activities of mung bean subjected to waterlogging[J]. Plant Sci, 2002, 163(1):117-123.
    [24]
    Wang DF, Liu YG, Tan XF, Liu H, Zeng G, et al. Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress[J]. Environ Sci Pollut R, 2015, 22:3489-3497.
    [25]
    Bashiri G, Prsad SM. Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenumgraecum L. grown under cadmium stress[J]. Acta Physiologiae Plantarum, 2015, 37(3), 1-14.
    [26]
    邓雨艳, 明建, 张昭其, 曾凯芳. 壳聚糖诱导脐橙果实抗病性、水杨酸及活性氧代谢变化[J]. 中国农业科学, 2010, 43(4):812-820.

    Deng YY, Ming J, Zhang ZQ, Zeng KF. Effect of chitosan on salicylic acid active oxygen metabolism of navel orange fruit[J]. Scientia Agricultura Sinica, 2010, 43(4):812-820.
    [27]
    Zhang J, Kirkham MB. Enzymatic response of the ascorbate-glutathione cycle to drought in sorghum and sunflo-wer plants[J]. Plant Sci, 1996, 113(2):139-147.
    [28]
    Jin YH, Tao DL, Hao ZQ, Ye J, Du YJ, et al. Environmental stresses and redox status of ascorbate[J]. Acta Botanica Sinica, 2003, 45(7):795-801.
    [29]
    王聪, 朱月林, 杨立飞, 陈磊. NaCl胁迫对菜用大豆种子抗坏血酸-谷胱甘肽循环的影响[J].植物营养与肥料学报, 2010, 16(5):1209-1216.

    Wang C, Zhu YL, Yang LF, Chen L. Effects of NaCl stress on ascorbate-glutathione cycle in vegetable soybean seeds[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(5):1209-1216.
    [30]
    颜志明, 孙锦, 郭世荣, 魏跃, 胡德龙, 王全智. 外源脯氨酸对盐胁迫下甜瓜幼苗根系抗坏血酸-谷胱甘肽循环的影响[J].植物科学学报, 2014, 32(5):502-508.

    Yan ZM, Sun J, Guo SR, Wei Y, Hu DZ, Wang ZQ. Effects of exogenous proline on the ascorbate-glutathione cycle in roots of Cucumis melo seedlings under salt stress[J]. Plant science journal, 2014, 32(5):502-508.
    [31]
    Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, et al. Phytoextraction of toxic metals:a central role for glutathione[J]. Plant Cell and Environment, 2012, 35(2):334-346.
    [32]
    刘涛, 徐刚, 高文瑞, 郭世荣, 李德翠, 孙艳军. ALA对低温胁迫下辣椒植株叶片中AsA-GSH循环的影响[J]. 江苏农业学报, 2011, 27(4):830-835.

    Lui T, Xu G, Gao WR, Guo SR, Li DC, Sun YJ. Effect of 5-aminolevulinic acid on the ascorbate-glutathione system of pepper leaves under low temperature stress[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(4):830-835.
    [33]
    Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L.[J]. Plant Physiol Bioch, 2005, 43(12):1082-1088.
    [34]
    Pukacka S, Ratajczak E. Antioxidative response of ascorbate glutathione pathway enzymes and metabolites to desi-ccation of recalcitrant Acer saccharinum seeds[J]. J Plant Physiol, 2006, 163(12):1259-1266.
    [35]
    徐照丽, 吴启堂, 依艳丽. 重金属植物螯合肽(PC)的研究进展[J]. 农业环境保护, 2001, 20(6):468-470.

    Xu ZL, Wu QT, Yi YL. Advanced progress of phytochelatins in plant[J]. Agro-environmental Protection, 2001, 20(6):468-470.
    [36]
    王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49(22):4323-4341.

    Wang XH, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots[J]. Scientia Agricultura Sinica, 2016, 49(22):4323-4341.
    [37]
    Vögeli-lange R, Wagner GJ. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves implication of a transport function for cadmium-binding peptides[J]. Plant Physiol, 1990, 92:1086-1093.
    [38]
    Saidi I, Chtourou Y, Djebali W. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings[J]. J Plant Physiol, 2014, 171(5):85-91.
    [39]
    Bashri G, Prasad SM. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings:Toxicity alleviation by up-regulation of ascorbate-glutathione cycle[J]. Ecotox Environ Safe, 2016, 132:329-338.
    [40]
    朱华兰. 镉胁迫下不同镁水平对玉米幼苗生长的影响及生理机制的研究[D]. 重庆:西南大学, 2013.
  • Related Articles

    [1]Zhang Youxuan, Duan Yingming, Zhou Yating, Gong Yanbing. Comparison of quantitative research methods for flower scent based on dynamic headspace collection[J]. Plant Science Journal, 2025, 43(1): 122-133. DOI: 10.11913/PSJ.2095-0837.24095
    [2]Lü Tian, Yue Weiying, Cai Mengmeng, Chang Jiang, He Dongli. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal, 2024, 42(2): 201-210. DOI: 10.11913/PSJ.2095-0837.23153
    [3]Cao Rui, Chen Hao, Ding Yi. Comparison of protein extraction methods and two-dimensional electrophoresis analysis in sacred lotus seeds[J]. Plant Science Journal, 2018, 36(1): 127-135. DOI: 10.11913/PSJ.2095-0837.2018.10127
    [4]XIAO Zhen, ZHAO Qi, ZHANG Chuan-Fang, WANG Xiao-Li, WANG Quan-Hua, DAI Shao-Jun. Abiotic Stress Response Mechanism of Oilseed Rape (Brassica napus L.) Revealed from Proteomics[J]. Plant Science Journal, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949
    [5]LI Qiang, CAO Yang, ZHANG Zheng, TUO Deng-Feng, BU Yao-Jun, BAI Yun. Review on the Application of Bioimpedance Methods in Plant Root Biology Research[J]. Plant Science Journal, 2016, 34(3): 488-495. DOI: 10.11913/PSJ.2095-0837.2016.30488
    [6]YANG Jie, CHEN Wen-Hong, SHUI Yu-Min, SHENG Jia-Shu. Investigating Methods of Epiphytes in Forest Canopy[J]. Plant Science Journal, 2008, 26(6): 661-667.
    [7]TAO Yue-Hong, ZHANG Zhao, ZHANG Ben-Gang, SI Jian-Yong. Discussion of Research Methods for Fat-soluble Allelochemicals[J]. Plant Science Journal, 2008, 26(5): 542-546.
    [8]TANG Hua, XIANG Fu-Ying, LIU Xiao-Lei, SHUAI Ai-Hua. A Review of Research Methods on Plant Aluminum Stress[J]. Plant Science Journal, 2007, 25(5): 494-499.
    [9]CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266.
    [10]Yang Ji. INFRASPECIFIC VARIATION IN PLANT AND THE EXPLORING METHODS[J]. Plant Science Journal, 1991, 9(2): 185-195.
  • Cited by

    Periodical cited type(12)

    1. 刘瑶,钟全林,徐朝斌,程栋梁,郑跃芳,邹宇星,张雪,郑新杰,周云若. 不同大小刨花楠细根功能性状与根际微环境关系. 植物生态学报. 2024(06): 744-759 .
    2. 崔浩浩,张光辉,王茜,严明疆,曹乐,刘鹏飞. 石羊河流域下游天然绿洲地下水生态功能强弱周期性与机制. 水利学报. 2023(02): 199-207+219 .
    3. 代雅琦,刘艳萍,韩路,王海珍. 地下水埋深对胡杨叶片光合作用及抗氧化物质积累的影响. 植物研究. 2022(02): 299-308 .
    4. 温云梦,张冬冬,王家强,多晶,蔡海辉,柳维扬. 不同地下水埋深区域胡杨叶片叶绿素含量的光谱估测研究. 西部林业科学. 2022(04): 87-95 .
    5. 李丹,王杰慧,胡德越,李旭东,张忠峰,李霞,张仲超,路兴慧,赵红霞. 鲁西8种观赏竹细根功能性状与根际土壤养分的关系. 竹子学报. 2022(03): 63-71 .
    6. 苏天燕,贾碧莹,胡云龙,杨秋,毛伟. 地下水位埋深对沙质草地典型植物群落土壤环境因子和根系生物量的影响. 草业科学. 2021(09): 1694-1705 .
    7. 田起隆,刘彤. 极端干旱环境下白梭梭细根分布与土壤水分关系. 石河子大学学报(自然科学版). 2020(01): 75-82 .
    8. 王飞,马剑平,马俊梅,满多清,郭春秀,张裕年. 民勤不同林龄胡杨根区土壤理化性质及相关性分析. 西北林学院学报. 2020(03): 23-28+54 .
    9. Chunxiu GUO,Jianping MA,Junmei MA,Duoqing MAN,Fei WANG,Yunian ZHANG,Peng ZHAO. Photosynthetic Physiological Response to Drought Stress of Populus euphratica at Different Ages in Minqin. Agricultural Biotechnology. 2020(04): 26-30+44 .
    10. 吴敏,邓平,赵英,钟道发,曾令鑫. 不同林龄红锥人工林细根垂直分布和衰老生理特征. 生态学杂志. 2019(09): 2622-2629 .
    11. 詹龙飞,于水强,王维枫,王琪,王静波. 水平空间配置对南林-95杨人工林主要细根性状的影响. 北京林业大学学报. 2019(10): 11-19 .
    12. 高科,旦久罗布,次旦,何世丞,谢文栋,严俊,张海鹏,李艳容,拉巴扎西. 藏北人工草地节水自压灌溉增产增效技术. 当代畜牧. 2018(35): 13-14 .

    Other cited types(22)

Catalog

    Article views (700) PDF downloads (889) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return