Advance Search
Duan Yi-Zhong, Yu Hui, Wang Hai-Tao, Du Zhong-Yu. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica[J]. Plant Science Journal, 2019, 37(3): 337-347. DOI: 10.11913/PSJ.2095-0837.2019.30337
Citation: Duan Yi-Zhong, Yu Hui, Wang Hai-Tao, Du Zhong-Yu. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica[J]. Plant Science Journal, 2019, 37(3): 337-347. DOI: 10.11913/PSJ.2095-0837.2019.30337

Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (41601059).

More Information
  • Received Date: October 28, 2018
  • Revised Date: December 10, 2018
  • Available Online: October 31, 2022
  • Published Date: June 27, 2019
  • The endangered relict plant Tetraena mongolica Maxim was studied, with the MaxEnt and Bioclim models used to predict potentially suitable regions. We used the knife-cutting method and environmental variable response curves to evaluate the dominant environmental factors affecting the distribution of T. mongolica. Furthermore, we used the ArcGIS natural discontinuity method to divide fitness levels. Results showed that T. mongolica was mainly distributed in the Xinjiang Uygur Autonomous Region, Tibet Region, Ningxia Hui Autonomous Region, Inner Mongolia, and the Gansu, Qinghai, Shaanxi, Shanxi, Hebei, Liaoning, Jilin, and Heilongjiang provinces in China, with a total area of 1.49×106 km2. Highly suitable zones were found in the Maowusu Sandy Land of Wuhai city, the Tengger Desert in the Alxa Left Banner, the southeastern part of Yinshan Mountain, and mountains in the Helan range. The potential distribution area of T. mongolica will be reduced to north of Inner Mongolia and western Northeast China by 2050. The Area Under Curve (AUC) average values of the two models were all above 0.8, justifying their application for predicting potential areas of T. mongolica. Among the 19 environmental variables, the main factors affecting the potential distribution of T. mongolica were average precipitation of the coldest quarter and temperature annual range, followed by the coefficient of variation of precipitation seasonality and standard deviation (SD) of temperature seasonality.
  • [1]
    Kozak KH, Graham CH, Wiens JJ. Integrating GIS-based environmental data into evolutionary biology[J]. Trends Ecol Evol, 2008, 23(3):141-148.
    [2]
    IPCC. Climate Change 2013:The Physical Science Basis Working group I to the Fifth Assessment Report[M/OL]. Cambridge:Cambridge University Press, 2013.
    [3]
    邹旭, 彭冶, 王璐, 李垚, 张往祥, 刘雪. 末次盛冰期以来气候变化对中国山荆子分布格局的影响[J]. 植物科学学报, 2018, 36(5):676-686.

    Zou X, Peng Y, Wang L, Li Y, Zhang WX, Liu X. Impact of climate change on the distribution pattern of Malus baccata (L.) Borkh. in China since the Last Glacial Maximum[J]. Plant Science Journal, 2018, 36(5):676-686.
    [4]
    Solomon S, Qin D, Manning M, et al. Climate Change 2007:The Physical Science Basis[M]. Cambridge:Cambridge University Press, 2007:18.
    [5]
    刘文胜, 游简舲, 曾文斌, 齐丹卉. 气候变化下青藏苔草地理分布的预测[J]. 中国草地学报, 2018, 40(5):43-49.

    Liu WS, You JL, Zeng WB, Qi DH. Prediction of the geographical distribution of Carex moorcroftii under global climate change based on MaxEnt model[J]. Chinese Journal of Grassland, 2018, 40(5):43-49.
    [6]
    乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学:生命科学, 2013, 43(11):915-927.

    Qiao HJ, Hu JH, Huang JH. Theoretical basis, future directions, and challenges for ecological niche models[J]. Scientia Sinica Vitae, 2013, 43(11):915-927.
    [7]
    朱耿平, 刘国卿, 卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.

    Zhu GP, Liu GQ, Pu WJ, Gao YB. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.
    [8]
    徐家文, 史家浩, 任强, 李绍勤. 基于BIOCLIM模型的扶桑绵粉蚧在中国的适生性分析[J]. 湖北农业科学, 2015, 54(11):2631-2633.

    Xu JW, Shi JH, Ren Q, Li SQ. Potential distribution of Phenacoccus solenopsis in China by the BIOCLIM model[J]. Hubei Agricultural Sciences, 2015, 54(11):2631-2633.
    [9]
    艾科拜尔·木哈塔尔, 热木图拉·阿卜杜克热木, 马合木提·哈力克. 基于生态位模型的艾比湖国家级自然保护区马鹿生境评价[J]. 生态学报, 2017, 37(11):3919-3925.

    Akbar Muhtar, Rahmutulla Abdukerim, Mahmut Halik. Assessing habitat suitability for Cervuselaphus in the Ebinur Lake National Nature Reserve[J]. Acta Ecologica Sinica, 2017, 37(11):3919-3925.
    [10]
    付贵全, 徐先英, 马剑平, 徐梦莎, 刘江, 丁爱强. 基于MaxEnt下梭梭潜在地理分布对水热条件的响应[J]. 草业科学, 2016, 33(11):2173-2179.

    Fu GQ, Xu XY, Ma JP, Xu MS, Liu J, Ding AQ. Responses of Haloxylon ammodendron potential geographical distribution to the hydrothermal conditions under MaxEnt model[J]. Pratacultural Science, 2016, 33(11):2173-2179.
    [11]
    王运生. 生态位模型在外来入侵物种风险评估中的应用研究[D]. 湖南:湖南农业大学, 2007.
    [12]
    杨持, 智颖飙, 征荣. 四合木种群的生态适应性[J]. 生态学报, 2006, 26(1):91-96.

    Yang C, Zhi YB, Zheng R. An analysis of ecological adaptability on Tetraena mongolica Maxim. populations[J]. Acta Ecologica Sinica, 2006, 26(1):91-96.
    [13]
    甄江红, 陈德喜, 玉山, 刘果厚. 濒危植物四合木生境适宜性变化分析[J]. 干旱区资源与环境, 2011, 25(7):188-195.

    Zheng JH, Chen DX, Yu S, Liu GH. Habitat suitability change for endangered plant Tetraena mongolica Maxim.[J]. Journal of Arid Land Resources and Environmen, 2011, 25(7):188-195.
    [14]
    张云飞, 杨持, 陈家宽. 四合木(Tetraena mongolica)分布区景观结构时空变化分析[J]. 武汉植物学研究, 2001, 19(1):25-30.

    Zhang YF, Yang C, Cheng JK. Spatial-temporal change of landscape structure in the distribution region of Tetraena mongolica[J]. Journal of Wuhan Botanical Research, 2001, 19(1):25-30.
    [15]
    甄江红. 濒危植物四合木生境的景观动态与适宜性评价研究[D]. 呼和浩特:内蒙古农业大学, 2008.
    [16]
    Wang WF, Hao WD, Bian ZF, Lei SG, Wang XS, Sang SX, Xu SC. Effect of coal mining activities on the environment of Tetraena mongolica in Wuhai, Inner Mongolia, China:A geochemical perspective[J]. Int J Coal Geol, 2014, 132(1):94-102.
    [17]
    Wang GL, Lin QQ, Xu YN. Tetraena mongolica Maxim. can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems[J]. Phytochemistry, 2007, 68(15):2112-2117.
    [18]
    Weselake RJ. Industrial Oil Crops[M]. New York:AOCS Press, 2016:413-434.
    [19]
    Lu KQ, Xie G, Li M, Li JF, Trivedi A, et al. Dataset of pollen morphological traits of 56 dominant species among desert vegetation in the eastern arid central Asia[J]. Data in Brief, 2018, 18:1022-1046.
    [20]
    Lu KQ, Gan Xie, Li M, Li JF, Anjali Trivedi, David K, et al. Pollen spectrum a cornerstone for tracing the evolution of the eastern central asian desert[J]. Quaternary Sci Rev, 2018, 186:111-122.
    [21]
    Wei XB, Xue JQ, Wang SL, Xue YQ, Lin H, Shao XF, et al. Fatty acid analysis in the seeds of 50Paeonia ostii individuals from the same population[J]. J Integr Agr, 2018, 17(8):1758-1767.
    [22]
    Lauterbach M, van der Merwe PW, Keßler L, Pirie MD, Bellstedt DU, Kadereit G. Evolution of leaf anatomy in arid environments:A case study in southern African Tetraena and Roepera (Zygophyllaceae)[J]. Mol Phylogenet Evol, 2016, 97:129-144.
    [23]
    王光明. 近二十年人为干扰对乌海市四合木景观格局影响研究[D]. 呼和浩特:内蒙古大学, 2012.
    [24]
    Vanagas G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interact Cardiov Th, 2004, 3(2):319-322.
    [25]
    张颖, 李君, 林蔚, 强胜. 基于最大熵生态位元模型的入侵杂草春飞蓬在中国潜在分布区的预测[J]. 应用生态学报, 2011, 22(11):2970-2976.

    Zhang Y, Li J, Lin W, Qiang S. Prediction of potentialt distriburion area of Erigeron philadelphicus in China based on MaxEnt model[J]. Chinese Journal of Applied Ecology, 2011, 22(11):2970-2976.
    [26]
    张路. MAXENT最大熵模型在预测物种潜在分布范围方面的应用[J]. 生物学通报, 2015, 50(11):9-12.

    Zhang L. Application of the MAXENT maximumentropy model in predicting the potential distribution of species[J]. Bulletin of Biology, 2015, 50(11):9-12.
    [27]
    李璇, 李垚, 方炎明. 基于优化的Maxent模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8):153-164.

    Li X, Li Y, Fang YM. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized MaxEnt model[J]. Scientia Silvae Sinicae, 2018, 54(8):153-164.
    [28]
    王茹琳, 高晓清, 王闫利, 姜淦, 沈沾红, 林姗. 基于MaxEnt的非洲橘硬蓟马在全球及中国的潜在分布区预测[J]. 中国农学通报, 2014, 30(28):315-320.

    Wang RL, Gao XQ, Wang YL, Jiang G, Shen ZH, Lin S. Potential distribution of Scirtothrips aurantii in China and the world predicted by MaxEnt[J]. China Agricultural Science Bulletin, 2014, 30(28):315-320.
    [29]
    陈铁柱, 刘建辉, 周先建, 张美, 辜彬, 廖述吉. 基于MaxEnt和ArcGIS预测合欢潜在分布及适宜性评价[J]. 北方园艺, 2017, 41(16):191-195.

    Chen TZ, Liu JX, Zhou XJ, Zhang M, Gu B, Liao SJ. Potential distribution prediction and suitability evaluation of Albizia julibrissin Durazz. based on maxent modeling and GIS[J]. Northern Horticulture, 2017, 41(16):191-195.
    [30]
    陈林. 红火蚁(Solenopsis invicta)在我国的潜在分布研究[D]. 北京:中国农业科学院, 2007.
    [31]
    洪波. 基于GIS的有害生物空间分布预测系统研究[D]. 杨凌:西北农林科技大学, 2009.
    [32]
    宋花玲, 贺佳, 虞慧婷, 李玲. 应用ROC曲线下面积对两相关诊断试验进行评价和比较[J]. 第二军医大学学报, 2006, 27(5):562-563.

    Song HL, He J, Yu HT, Li L. Area under ROC curves in evaluation and comparison of two correlated diagnostic tests[J]. Academic Journal of Second Military Medical University, 2006, 27(5):562-563.
    [33]
    王运生, 谢丙炎, 万方浩, 肖启明, 戴良英. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372.

    Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372.
    [34]
    Hewitt GM. The genetic legacy of the Quaternary ice ages[J]. Nature, 2000, 405:907-913.
    [35]
    徐庆, 刘世荣, 臧润国, 郭泉水, 郝玉光. 中国特有植物四合木种群的生殖生态特征:种群生殖值及生殖分配研究[J]. 林业科学, 2001, 37(2):36-41.

    Xu Q, Liu SR, Zang RG, Guo QS, Hao YG. The characteristics of reproductive ecology of endemic species Tetraena mongolica population in China[J]. Scientia Silvae Sinicae, 2001, 37(2):36-41.
    [36]
    吴建国. 气候变化对我国7种植物潜在分布的影响[J]. 广西植物, 2011, 31(5):595-607, 694.

    Wu JG. The potential effects of climate change on the distributions of 7 plants in China[J]. Guihaia, 2011, 31(5):595-607, 694.
    [37]
    Mckenney DW, Pedlar JH, Lawrence K, Campbell K. Potential impacts of climate change on the distribution of North American trees[J]. BioScience, 2007, 57:939-948.
    [38]
    Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320:1768-1771.
    [39]
    Engler R, Randin CF, Thuiller W, Dullinger S. 21st century climate change threatens mountain flora unequally across Europe[J]. Global Change Biol, 2011, 17(7):2330-2341.
    [40]
    张兴旺, 李垚, 谢艳萍, 包先明, 方炎明. 气候变化对黄山花楸潜在地理分布的影响[J]. 植物资源与环境学报, 2018, 27(4):31-41.

    Zhang XW, Li Y, Xie YP, Bao XM, Fang YM. Effect of climate change on potential geographical distribution of Sorbus amabilis[J]. Journal of Plant Resources and Environment, 2018, 27(4):31-41.
    [41]
    孙平. 四合木(Tetraena mongolica)保护遗传学研究及三种西鄂尔多斯濒危植物微卫星标记的筛选[D]. 合肥:安徽大学, 2018.
    [42]
    杨超. 蒙古高原和青藏高原针茅属植物适宜分布区及其与气候因子的相关性[D]. 呼和浩特:内蒙古大学, 2016.
    [43]
    刘超, 霍宏亮, 田路明, 董星光, 齐丹, 张莹, 等. 基于MaxEnt模型不同气候变化情景下的豆梨潜在地理分布[J].应用生态学报, 2018, 29(11):3696-3704.

    Liu C, Huo HL, Tian LM, Dong XG, Qi D, Zhang Y, et al. Potential geographical distribution of Pyrus calleryana under different climate change scenarios based on the MaxEnt model[J]. Chinese Journal of Applied Ecology, 2018, 29(11):3696-3704.
  • Related Articles

    [1]Zhang Youxuan, Duan Yingming, Zhou Yating, Gong Yanbing. Comparison of quantitative research methods for flower scent based on dynamic headspace collection[J]. Plant Science Journal, 2025, 43(1): 122-133. DOI: 10.11913/PSJ.2095-0837.24095
    [2]Lü Tian, Yue Weiying, Cai Mengmeng, Chang Jiang, He Dongli. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal, 2024, 42(2): 201-210. DOI: 10.11913/PSJ.2095-0837.23153
    [3]Cao Rui, Chen Hao, Ding Yi. Comparison of protein extraction methods and two-dimensional electrophoresis analysis in sacred lotus seeds[J]. Plant Science Journal, 2018, 36(1): 127-135. DOI: 10.11913/PSJ.2095-0837.2018.10127
    [4]XIAO Zhen, ZHAO Qi, ZHANG Chuan-Fang, WANG Xiao-Li, WANG Quan-Hua, DAI Shao-Jun. Abiotic Stress Response Mechanism of Oilseed Rape (Brassica napus L.) Revealed from Proteomics[J]. Plant Science Journal, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949
    [5]LI Qiang, CAO Yang, ZHANG Zheng, TUO Deng-Feng, BU Yao-Jun, BAI Yun. Review on the Application of Bioimpedance Methods in Plant Root Biology Research[J]. Plant Science Journal, 2016, 34(3): 488-495. DOI: 10.11913/PSJ.2095-0837.2016.30488
    [6]YANG Jie, CHEN Wen-Hong, SHUI Yu-Min, SHENG Jia-Shu. Investigating Methods of Epiphytes in Forest Canopy[J]. Plant Science Journal, 2008, 26(6): 661-667.
    [7]TAO Yue-Hong, ZHANG Zhao, ZHANG Ben-Gang, SI Jian-Yong. Discussion of Research Methods for Fat-soluble Allelochemicals[J]. Plant Science Journal, 2008, 26(5): 542-546.
    [8]TANG Hua, XIANG Fu-Ying, LIU Xiao-Lei, SHUAI Ai-Hua. A Review of Research Methods on Plant Aluminum Stress[J]. Plant Science Journal, 2007, 25(5): 494-499.
    [9]CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266.
    [10]Yang Ji. INFRASPECIFIC VARIATION IN PLANT AND THE EXPLORING METHODS[J]. Plant Science Journal, 1991, 9(2): 185-195.
  • Cited by

    Periodical cited type(12)

    1. 刘瑶,钟全林,徐朝斌,程栋梁,郑跃芳,邹宇星,张雪,郑新杰,周云若. 不同大小刨花楠细根功能性状与根际微环境关系. 植物生态学报. 2024(06): 744-759 .
    2. 崔浩浩,张光辉,王茜,严明疆,曹乐,刘鹏飞. 石羊河流域下游天然绿洲地下水生态功能强弱周期性与机制. 水利学报. 2023(02): 199-207+219 .
    3. 代雅琦,刘艳萍,韩路,王海珍. 地下水埋深对胡杨叶片光合作用及抗氧化物质积累的影响. 植物研究. 2022(02): 299-308 .
    4. 温云梦,张冬冬,王家强,多晶,蔡海辉,柳维扬. 不同地下水埋深区域胡杨叶片叶绿素含量的光谱估测研究. 西部林业科学. 2022(04): 87-95 .
    5. 李丹,王杰慧,胡德越,李旭东,张忠峰,李霞,张仲超,路兴慧,赵红霞. 鲁西8种观赏竹细根功能性状与根际土壤养分的关系. 竹子学报. 2022(03): 63-71 .
    6. 苏天燕,贾碧莹,胡云龙,杨秋,毛伟. 地下水位埋深对沙质草地典型植物群落土壤环境因子和根系生物量的影响. 草业科学. 2021(09): 1694-1705 .
    7. 田起隆,刘彤. 极端干旱环境下白梭梭细根分布与土壤水分关系. 石河子大学学报(自然科学版). 2020(01): 75-82 .
    8. 王飞,马剑平,马俊梅,满多清,郭春秀,张裕年. 民勤不同林龄胡杨根区土壤理化性质及相关性分析. 西北林学院学报. 2020(03): 23-28+54 .
    9. Chunxiu GUO,Jianping MA,Junmei MA,Duoqing MAN,Fei WANG,Yunian ZHANG,Peng ZHAO. Photosynthetic Physiological Response to Drought Stress of Populus euphratica at Different Ages in Minqin. Agricultural Biotechnology. 2020(04): 26-30+44 .
    10. 吴敏,邓平,赵英,钟道发,曾令鑫. 不同林龄红锥人工林细根垂直分布和衰老生理特征. 生态学杂志. 2019(09): 2622-2629 .
    11. 詹龙飞,于水强,王维枫,王琪,王静波. 水平空间配置对南林-95杨人工林主要细根性状的影响. 北京林业大学学报. 2019(10): 11-19 .
    12. 高科,旦久罗布,次旦,何世丞,谢文栋,严俊,张海鹏,李艳容,拉巴扎西. 藏北人工草地节水自压灌溉增产增效技术. 当代畜牧. 2018(35): 13-14 .

    Other cited types(22)

Catalog

    Article views (1093) PDF downloads (628) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return