Advance Search
Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690
Citation: Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690

Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31701064, 31872804) and National Key Research and Development Project (2017YFD0201300).

More Information
  • Received Date: March 27, 2019
  • Available Online: October 31, 2022
  • Published Date: October 27, 2019
  • Abscisic acid (ABA) is an important plant phytohormone and plays a key role in the regulation of seed development, dormancy, and germination, plant growth and flowering inhibition, and abiotic stress response pathways. ABA also interacts with other plant hormones, such as auxin and ethylene, to precisely regulate root growth, including that of preprimary roots, lateral roots, and root hairs. In this updated review, we summarize the molecular mechanisms by which ABA regulates plant root growth and development, focusing on the model plant Arabidopsis thaliana (L.) Heynh. We also discuss the proposed mechanism of ABA interaction with other plant hormones (such as GA) to regulate root growth, especially under abiotic stress conditions. Additionally, the future research directions in this field are discussed.
  • [1]
    Chen X, Yao Q, Gao X, Jiang C, Harberd N, Fu X. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Curr Biol, 2016, 26(5):640-646.
    [2]
    刘倩, 高娅妮, 柳旭, 周文楠, 王佺珍. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响[J]. 生态学报, 2018, 38(17):6143-6155.

    Liu Q, Gao YN, Liu X, Zhou WN, Wang QZ. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress[J]. Acta Ecologica Sinica, 2018, 38(17):6143-6155.
    [3]
    Paul K, Christine SD. The origin and early evolution of roots[J]. Plant Physiol, 2014, 166(2):570-580.
    [4]
    Laskowski M, Ten Tusscher KH. Periodic lateral root pri-ming:what makes it tick?[J]. Plant Cell, 2017, 29(3):432-444.
    [5]
    Steffens B, Rasmussen A. The physiology of adventitious roots[J]. Plant Physiol, 2016, 170(2):603-617.
    [6]
    莫亿伟, 李夏杰, 王海, 陈泽恺, 杨国, 王尉. IAA对水稻根毛形成与水通道蛋白基因表达关系的研究[J]. 中国农业科学, 2015, 48(21):4227-4239.

    Mo YW, Li XJ, Wang H, Chen ZK, Yang G, Wang W. Effect of auxin treatment on root hair formation and aquaporins genes expression in root hair of rice[J]. Scientia Agricultura Sinica, 2015, 48(21):4227-4239.
    [7]
    Dolan L. Root hair development in grasses and cereals (Poaceae)[J]. Curr Opin Genet Dev, 2017, 45:76-81.
    [8]
    Guy W, Sparks EE, Benfey PN. Genes and networks re-gulating root anatomy and architecture[J]. New Phytol, 2015, 208(1):26-38.
    [9]
    Bellini C, Pacurar DI, Perrone I. Adventitious roots and la-teral roots:similarities and differences[J]. Annu Rev Plant Biol, 2014, 65(65):639-666.
    [10]
    Ma Y, Cao J, He J, Chen Q, Li X, Yang Y. Molecular mechanism for the regulation of aba homeostasis during plant development and stress responses[J]. Int J Mol Sci, 2018, 19(11).
    [11]
    Yoshida T, Mogami J, Yamaguchi-Shinozaki K. Omics approaches toward defining the comprehensive abscisic acid signaling network in plants[J]. Plant Cell Physiol, 2015, 56(6):1043-1052.
    [12]
    Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, et al. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels[J]. Plant J, 2016, 85(3):348-361.
    [13]
    Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. Plos Genet, 2013, 9(6):e1003577.
    [14]
    Shu K, Liu XD, Xie Q, He ZH. Two faces of one seed:hormonal regulation of dormancy and germination[J]. Mol Plant, 2016, 9(1):34-45.
    [15]
    Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, et al. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription[J]. J Exp Bot, 2016, 67(1):195-205.
    [16]
    Rowe JH, Topping JF, Liu J, Lindsey K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin[J]. New Phytol, 2016, 211(1):225-239.
    [17]
    Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana[J]. G3:Genes, Genomes, Genet, 2014, 4(7):1259-1274.
    [18]
    Tian H, Guo H, Dai X, Cheng Y, Zheng K, Wang X, et al. An aba down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and aba response when overexpressed in Arabidopsis[J]. Sci Rep, 2015, 5(17587):17587.
    [19]
    Luo X, Chen Z, Gao J, Gong Z. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis[J]. Plant J, 2014, 79(1):44-55.
    [20]
    Rogers ED, Benfey PN. Regulation of plant root system architecture:implications for crop advancement[J]. Curr Opin Biotechnol, 2015, 32(32C):93-98.
    [21]
    Lee Y, Lee WS, Kim SH. Hormonal regulation of stem cell maintenance in roots[J]. J Exp Bot, 2013, 64(5):1153.
    [22]
    Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, et al. A jasmonate signaling network activates root stem cells and promotes regeneration[J]. Cell, 2019, 177(4):942-956.
    [23]
    Yu Q, Tian H, Yue K, Liu J, Zhang B, Li X, et al. A ploop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ros homeostasis in Arabidopsis root[J]. Plos Genet, 2016, 12(9):e1006175.
    [24]
    Scheres B, Krizek BA. Coordination of growth in root and shoot apices by AIL/PLT transcription factors[J]. Curr Opin Plant Biol, 2018, 41:95-101.
    [25]
    Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root[J]. Proc Natl Acad Sci U S A, 2017, 114(36):e7641-e7649.
    [26]
    Naramoto S. Polar transport in plants mediated by membrane transporters:focus on mechanisms of polar auxin transport[J]. Curr Opin Plant Biol, 2017, 40:8-14.
    [27]
    Doron SI, Dudy BZ. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis[J]. Plant Cell, 2011, 22(5):3560-3573.
    [28]
    Jan P, Jirí F. Auxin transport routes in plant development[J]. Development, 2009, 136(16):2675-2688.
    [29]
    Doncheva S, Amenós M, Poschenrieder C, Barceló J. Root cell patterning:a primary target for aluminium toxicity in maize[J]. J Exp Bot, 2005, 56(414):1213-1220.
    [30]
    Petricka JJ, Winter CM, Benfey PN. Control of Arabidopsis root development[J]. Annu Rev Plant Biol, 2012, 63(1):563-590.
    [31]
    Schaller GE, Street IH, Kieber JJ. Cytokinin and the cell cycle[J]. Curr Opin Plant Biol, 2014, 21(21C):7-15.
    [32]
    Hemerly A, Engler Jde A, Bergounioux C, Van Montagu M, Engler G, Inze D, et al. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development[J]. EMBO J, 1995, 14(16):3925-3936.
    [33]
    Boudolf V, Barrôco R, Engler Jde A, Verkest A, Beeckman T, Naudts M, et al. B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(4):945-955.
    [34]
    Komaki S, Sugimoto K. Control of the plant cell cycle by developmental and environmental cues[J]. Plant Cell Physiol, 2012, 53(6):953-964.
    [35]
    Guanfang W, Hongzhi K, Yujin S, Xiaohong Z, Wei Z, Naomi A, et al. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins[J]. Plant Physiol, 2004, 135(2):1084-1099.
    [36]
    Vieira P, De Almeida Engler J. Plant cyclin-dependent kinase inhibitors of the KRP family:potent inhibitors of root-knot nematode feeding sites in plant roots[J]. Front Plant Sci, 2017, 8:1514.
    [37]
    Kristiina H, Elodie B, Steffen V, Janice de AE, Dirk I, Tom B. Auxin-mediated cell cycle activation during early lateral root initiation[J]. Plant Cell, 2002, 14(10):2339-2351.
    [38]
    Cruz-Ramírez A1, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, et al. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division[J]. Cell, 2012, 150(5):1002-1015.
    [39]
    袁冰剑, 张森磊, 曹萌萌, 王志娟, 李霞. 脱落酸通过影响生长素合成及分布抑制拟南芥主根伸长[J]. 中国生态农业学报, 2014, 22(11):1341-1347.

    Yuan BJ, Zhang SL, Cao MM, Wang ZJ, Li X. ABA mo-dulates root growth through regulating auxin in Arabidopsis thaliana[J]. Chinese Journal of Eco-Agriculture, 2014, 22(11):1341-1347.
    [40]
    Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, et al. Auxin Response Factor2(ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis[J]. PLoS Genet, 2011, 7(7):e1002172.
    [41]
    Promchuea S, Zhu Y, Chen Z, Jing Z, Gong Z. ARF2 coordinates with PLETHORAs and PINs to orchestrate ABA-mediated root meristem activity in Arabidopsis[J]. J Integr Plant Biol, 2017, 59(1):30-43.
    [42]
    Wang Z, Mao JL, Zhao YJ, Li CY, Xiang CB. L-cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana[J]. J Integr Plant Biol, 2015, 57(2):186-197.
    [43]
    Larsen PB. Mechanisms of ethylene biosynthesis and response in plants[J]. Essays Biochem, 2015, 58(1):61-70.
    [44]
    Gazzarrini S, Tsai AY. Hormone cross-talk during seed germination[J]. Essays Biochem, 2015, 58:151-164.
    [45]
    Mamoona K, Wilfried R, Brigitte P. The role of hormones in the aging of plants-a mini-review[J]. Gerontology, 2013, 60(1):49-55.
    [46]
    Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynthesis[J]. J Plant Growth Regul, 2007, 26(2):92-105.
    [47]
    Swarup R, Parry G, Graham N, Allen T, Bennett M. Auxin cross-talk:integration of signalling pathways to control plant development[J]. Plant Mol Biol, 2002, 49(3-4):411-426.
    [48]
    Kamil RZ, Karin L, Steffen V, Radka P, Tom B, Jirí F, et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution[J]. Plant Cell, 2007, 19(7):2197-2212.
    [49]
    Yoshida H, Nagata M, Saito K, Wang KL, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 21-aminocyclopropane-1-carboxylate synthases[J]. Bmc Plant Biol, 2005, 5(1):14.
    [50]
    Shu-Hua C, Willmann MR, Huei-Chi C, Jen S. Calcium signaling through protein kinases. The Arabidopsis cal-cium-dependent protein kinase gene family[J]. Plant Physiol, 2002, 129(2):469.
    [51]
    Strader LC, Chen GL, Bartel B. Ethylene directs auxin to control root cell expansion[J]. Plant J, 2010, 64(5):874-884.
    [52]
    Yang L, Wang S, Sun L, Ruan M, Li S, He R, et al. Involvement of G6PD5 in ABA response during seed germination and root growth in Arabidopsis[J]. BMC Plant Biol, 2019, 19(1):44.
    [53]
    Sakaoka S, Mabuchi K, Morikami A, Tsukagoshi H. MYB30 regulates root cell elongation under abscisic acid signaling[J]. Commun Integr Biol, 2018, 11(4):e1526604.
    [54]
    Mabuchi K, Maki H, Itaya T, Suzuki T, Nomoto M, Sakaoka S, et al. MYB30 links ROS signaling, root cell elongation, and plant immune responses[J]. Proc Natl Acad Sci U S A, 2018, 115(20):E4710-E4719.
    [55]
    Ive DS, White PJ, A Glyn B, Lionel D, Boris P, Ilda C, et al. Analyzing lateral root development:how to move forward[J]. Plant Cell, 2012, 24(1):15-20.
    [56]
    Péret B, Rybel BD, Casimiro I, Benková E, Swarup R, Laplaze L, et al. Arabidopsis lateral root development:an emerging story[J]. Trends Plant Sci, 2009, 14(7):399-408.
    [57]
    Celenza JL Jr, Grisafi PL, Fink GR. A pathway for lateral root formation in Arabidopsis thaliana[J]. Genes Dev, 1995, 9(17):2131-2142.
    [58]
    Smet LD, Signora L, Beeckman T, Foyer CH, Zhang H. An abscisic acid-sensitive checkpoint in lateral root deve-lopment of Arabidopsis[J]. Plant J, 2010, 33(3):543-555.
    [59]
    Suzuki M, Kao CY, Cocciolone S, Mccarty DR. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots[J]. Plant J, 2001, 28(4):409-418.
    [60]
    Brady SM, Sarkar SF, Bonetta D, McCourt P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis[J]. Plant J, 2010, 34(1):67-75.
    [61]
    Jeon E, Kang NY, Cho C, Joon Seo P, Chung Suh M, Kim J. LBD14/ASL17 positively regulates lateral root formation and is involved in aba response for root architecture in Arabidopsis[J]. Plant Cell Physiol, 2017, 58(12):2190-2201.
    [62]
    Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W. The regulation and plasticity of root hair patterning and morphogenesis[J]. Development, 2016, 143(11):1848-1858.
    [63]
    Jang G, Yi K, Pires ND, Menand B, Dolan L. RSL genes are sufficient for rhizoid system development in early diverging land plants[J]. Development, 2011, 138(11):2273-2281.
    [64]
    Rymen B, Kawamura A, Schãfer S, Breuer C, Iwase A, Shibata M, et al. ABA suppresses root hair growth via the OBP4 transcriptional regulator[J]. Plant Physiol, 2017, 173(3):1750-1762.
    [65]
    Wang T, Li C, Wu Z, Jia Y, Wang H, Sun S, et al. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation[J]. Front Plant Sci, 2017, 8:1121.
    [66]
    Wang L, Dong J, Gao Z, Liu D. The Arabidopsis gene HYPERSENSITIVE TO PHOSPHATE STARVATION 3 encodes[WTXFX] ETHYLENE OVERPRODUCTION 1[WTXFZ] [J]. Plant Cell Physiol, 2012, 53(6):1093-1105.
    [67]
    Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163(3):670-683.
    [68]
    Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, et al. Dormancy and germination:how does the crop seed decide?[J]. Plant Biol, 2015, 17(6):1104-1112.
    [69]
    Shu K, Zhou W, Chen F, Luo X, Yang W. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses[J]. Front Plant Sci, 2018, 9:416.
    [70]
    Shu K, Zhou W, Yang W. APETALA 2-domain-containing transcription factors:focusing on abscisic acid and gibberellins antagonism[J]. New Phytol, 2018, 217(3):977-983.
    [71]
    Lim CW, Baek W, Jung J, Kim JH, Lee SC. Function of aba in stomatal defense against biotic and drought stresses[J]. Int J Mol Sci, 2015, 16(7):15251-15270.
    [72]
    Ramirez L, Negri P, Sturla L, Guida L, Vigliarolo T, Maggi M, et al. Abscisic acid enhances cold tolerance in honeybee larvae[J]. Proc Biol Sci, 2017, 284(1852).
    [73]
    Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. Mechanism of stomatal closure in plants exposed to drought and cold stress[J]. Adv Exp Med Biol, 2018, 1081:215-232.
    [74]
    Fonouni-Farde C, Diet A, Frugier F. Root development and endosymbioses:DELLAs lead the orchestra[J]. Trends Plant Sci, 2016, 21(11):898-900.
    [75]
    Li G, Zhu C, Gan L, Ng D, Xia K. GA(3) enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis[J]. Plant Cell Rep, 2015, 34(3):483-494.
    [76]
    Shu K, Yang W. E3 ubiquitin ligases:ubiquitous actors in plant development and abiotic stress responses[J]. Plant Cell Physiol, 2017, 58(9):1461-1476.
  • Related Articles

    [1]Jia Yanru, Jin Yufan, Jiao Yuan, Zhou Yingxu, Shi Yang, Chen Ji, Chen Yani, Huang Yanyan, Huang Jin. A review on the research progress of the Phytocyanin (PC) protein family[J]. Plant Science Journal, 2024, 42(5): 644-653. DOI: 10.11913/PSJ.2095-0837.23290
    [2]Zhang Jingtong, Zhang Shenshen, Zheng Liwen, Guo Deping. Nitrogen modulates plant diseases: recent progress[J]. Plant Science Journal, 2024, 42(3): 404-414. DOI: 10.11913/PSJ.2095-0837.23247
    [3]Li Ji-Jun, Chen Ya-Hui, Zhou Zhi-Hua, Wang Yi-Jin, Yao Xuan, Guo Liang. Research progress on mechanisms of plant adaptation to flooding stress[J]. Plant Science Journal, 2023, 41(6): 835-846. DOI: 10.11913/PSJ.2095-0837.23234
    [4]Liu Xue-Lian, Cao Ding-Ding, Deng Jiao, Yang Ping-Fang, Lin Zhong-Yuan. Latest progress in molecular biological studies of Nelumbo[J]. Plant Science Journal, 2023, 41(3): 388-399. DOI: 10.11913/PSJ.2095-0837.22192
    [5]Luo Xi, Liu Jiang-Qiong, Zhang Shen-Shen, Zhang Jing-Ze, Guo De-Ping. Molecular mechanism of Ustilago maydis pathogenicity[J]. Plant Science Journal, 2020, 38(6): 853-861. DOI: 10.11913/PSJ.2095-0837.2020.60853
    [6]ZHOU Yuan, GAO Lei, WANG Zhi-Wei, WANG Ting. Application of Molecular Marker Techniques in Genetic Diversity of Pteridophytes[J]. Plant Science Journal, 2009, 27(6): 667-673.
    [7]KE De-Sen, WANG Zheng-Xun. The Role of Reactive Oxygen Species in the Ethylene Biosynthesis in Plants[J]. Plant Science Journal, 2009, 27(3): 327-331.
    [8]QIU Qing-Chuan, YANG Dai-Chang. Molecular Pharming in Plants:An Overview and Update[J]. Plant Science Journal, 2009, 27(1): 83-89.
    [9]ZHANG Hong-Ming, ZHAO Shi, GAO Rong-Fu. Molecular Properties of Phytochromes and Their Signalling Mechanism[J]. Plant Science Journal, 2003, 21(6): 537-543.
    [10]Peng Shaolin, Zhang Taiping. AN INTRODUCTION TO MOLECULAR ECOLOGY OF CULTIVATED PLANTS[J]. Plant Science Journal, 2000, 18(2): 165-168.
  • Cited by

    Periodical cited type(12)

    1. 刘瑶,钟全林,徐朝斌,程栋梁,郑跃芳,邹宇星,张雪,郑新杰,周云若. 不同大小刨花楠细根功能性状与根际微环境关系. 植物生态学报. 2024(06): 744-759 .
    2. 崔浩浩,张光辉,王茜,严明疆,曹乐,刘鹏飞. 石羊河流域下游天然绿洲地下水生态功能强弱周期性与机制. 水利学报. 2023(02): 199-207+219 .
    3. 代雅琦,刘艳萍,韩路,王海珍. 地下水埋深对胡杨叶片光合作用及抗氧化物质积累的影响. 植物研究. 2022(02): 299-308 .
    4. 温云梦,张冬冬,王家强,多晶,蔡海辉,柳维扬. 不同地下水埋深区域胡杨叶片叶绿素含量的光谱估测研究. 西部林业科学. 2022(04): 87-95 .
    5. 李丹,王杰慧,胡德越,李旭东,张忠峰,李霞,张仲超,路兴慧,赵红霞. 鲁西8种观赏竹细根功能性状与根际土壤养分的关系. 竹子学报. 2022(03): 63-71 .
    6. 苏天燕,贾碧莹,胡云龙,杨秋,毛伟. 地下水位埋深对沙质草地典型植物群落土壤环境因子和根系生物量的影响. 草业科学. 2021(09): 1694-1705 .
    7. 田起隆,刘彤. 极端干旱环境下白梭梭细根分布与土壤水分关系. 石河子大学学报(自然科学版). 2020(01): 75-82 .
    8. 王飞,马剑平,马俊梅,满多清,郭春秀,张裕年. 民勤不同林龄胡杨根区土壤理化性质及相关性分析. 西北林学院学报. 2020(03): 23-28+54 .
    9. Chunxiu GUO,Jianping MA,Junmei MA,Duoqing MAN,Fei WANG,Yunian ZHANG,Peng ZHAO. Photosynthetic Physiological Response to Drought Stress of Populus euphratica at Different Ages in Minqin. Agricultural Biotechnology. 2020(04): 26-30+44 .
    10. 吴敏,邓平,赵英,钟道发,曾令鑫. 不同林龄红锥人工林细根垂直分布和衰老生理特征. 生态学杂志. 2019(09): 2622-2629 .
    11. 詹龙飞,于水强,王维枫,王琪,王静波. 水平空间配置对南林-95杨人工林主要细根性状的影响. 北京林业大学学报. 2019(10): 11-19 .
    12. 高科,旦久罗布,次旦,何世丞,谢文栋,严俊,张海鹏,李艳容,拉巴扎西. 藏北人工草地节水自压灌溉增产增效技术. 当代畜牧. 2018(35): 13-14 .

    Other cited types(22)

Catalog

    Article views (2408) PDF downloads (1025) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return